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Slideaqualab 3Metrology: Elements of Statistics

Reference Books (Weeks 8&9)

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015

J.R. Taylor, An Introduction to Error Analysis, 2nd ed., 1997

G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters, 2nd ed., 2005

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010

S.M. Ross, Introduction to Probability Models, 10th ed., 2009

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd ed., 1991

The first reference, by Blitzstein, was used extensively throughout this lecture as well 
as the following one. It should still be available from the EPFL library and is a 
suggested read for these topics.

NB: in general, see also the reference box at the bottom of the slides for notes on the 
exact chapters, etc.
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Week 8 Summary

| C. Bruschini, E. Charbon | 2025

8.1  Introduction to Probability: 𝑃 𝒜 ,𝑃ሼ𝒜|ℬሽ → Bayes′ rule, Law of Total Prob. ሺLOTPሻ, 

Independent Variables

8.2 Random Variables: discrete/continuous RV 𝑋 and its distribution expressed as 

PMF 𝑝௑ 𝑥  / PDF 𝑓௑ 𝑥 ↔ CDF 𝐹௑ሺ𝑥ሻ

Examples: Binomial: Binሺ𝑛, 𝑝ሻ, Poisson: 𝑋~Pois 𝜆 , Uniform: 𝑈~Unif 𝑎, 𝑏 , Normal (Gaussian): 

𝑋~𝒩 𝜇,𝜎ଶ , Exponential: 𝑋~Expo 𝜆

8.3 Moments: RV 𝑋: expected value (mean) 𝐸 𝑋 , variance 𝑉𝑎𝑟 𝑋 ൌ 𝜎ଶ /standard 

deviation 𝑆𝐷 𝑋 ൌ 𝑉𝑎𝑟 𝑋 ൌ 𝜎 → 𝑛‐th moment 𝐸 𝑋௡ , central moment /standardized moment 

and their properties←moment generating function (MGF) 𝜙 𝑡 ൌ 𝐸 𝑒௧௑

S

The lecture starts with a small recap of the main elements of the previous week.
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Week 8 Summary

| C. Bruschini, E. Charbon | 2025

8.4 Covariance and Correlation: 

Multiple RVs → Multivariate distributions (8.1, 8.2 →): joint →marginal, → conditional, Independent 

distributions

Covariance 𝐶𝑜𝑣 𝑋,𝑌 →  𝐶𝑜𝑟𝑟 𝑋,𝑌  ሺunitless versionሻ

Variance of multivariate distributions:

1. 𝑉𝑎𝑟 𝑋 ൅ 𝑌 ൌ 𝑉𝑎𝑟 𝑋 ൅ 𝑉𝑎𝑟 𝑌 ൅ 2𝐶𝑜𝑣 𝑋,𝑌

2. 𝑉𝑎𝑟 𝑋ଵ ൅ ⋯൅ 𝑋௡ ൌ 𝑉𝑎𝑟 𝑋ଵ ൅ ⋯൅ 𝑉𝑎𝑟 𝑋௡ ൅ 2∑ 𝐶𝑜𝑣 𝑋௜ ,𝑋௝௜ழ௝

S
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Outline

8.1  Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0  Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025

The Outline covers both this lecture as well as the previous one.
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9.0.1 Uniform Distribution

 Uniform random variable in  𝑎, 𝑏 : completely random number between 
𝑎 and 𝑏

‐> PDF constant over chosen interval

 Uniform distribution 𝑈~Unif 𝑎, 𝑏 in the interval  𝑎, 𝑏 if:

PDF:     𝑓௎ 𝑥 ൌ ቐ
1

𝑏 െ 𝑎
               if 𝑎 ൏ 𝑥 ൏ 𝑏

0                    otherwise

CDF:     𝐹௎ 𝑥 ൌ ൞

0                           if 𝑥 ൑ 𝑎
𝑥 െ 𝑎
𝑏 െ 𝑎

                 if 𝑎 ൏ 𝑥 ൏ 𝑏

1                          if 𝑥 ൒ 𝑏

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.2

Unif(0,1) PDF & CDF

S

We will now look again at some of the most important random variable distributions 
introduced in the previous lecture, and go further into their characteristics, in 
particular their variance. As before, their properties are going to be illustrated by 
means of examples from engineering and physics.

This slide is simply a summary of what previously shown in 8.2.6.

Can you think of random variables with this kind of distribution? E.g. (later) 
quantization noise…
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9.0.1 Uniform Distribution (contd.)

 Probability is inversely proportional to length.

 Even in a sub‐interval, we still have a uniform distribution

Mean:     𝐸ሼ𝑈ሽ ൌ න 𝑥
1

𝑏 െ 𝑎

௕

௔
𝑑𝑥 ൌ

𝑎 ൅ 𝑏
2

Second Order Moment:      𝐸ሼ𝑈ଶሽ ൌ න 𝑥ଶ
1

𝑏 െ 𝑎
 

௕

௔
𝑑𝑥 ൌ

1
3
𝑏ଷ െ 𝑎ଷ

𝑏 െ 𝑎

Variance∗:     𝑉𝑎𝑟 𝑈 ൌ 𝐸 𝑈ଶ െ 𝐸 𝑈 ଶ ൌ
1
3

 
𝑏ଷ െ 𝑎ଷ

𝑏 െ 𝑎
െ

𝑎 ൅ 𝑏
2

ଶ

ൌ

ൌ
ሺ𝑏 െ 𝑎ሻଶ

12

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.2

Unif(0,1) PDF & CDF

*Using 8.3.4 (W8)

We calculate the variance of a uniform distribution by using the Week 8 formula on 
variance in Section 8.3.4, 𝑉𝑎𝑟 𝑋 ൌ 𝐸 𝑋ଶ െ 𝐸 𝑋 ଶ, rather than a direct calculation.
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9.0.2 Standard Gaussian Distribution

 Gaussian (or Normal) distribution: 
 well‐known continuous distribution with a bell‐shaped PDF

 widely used in statistics because of the central limit theorem (see next 
section) 

 Standard Gaussian 𝑍~𝒩 0,1 :

PDF:      𝜑 𝑧 ൌ
1

2𝜋
𝑒ି௭

మ/ଶ,           െ∞ ൏ 𝑧 ൏ ∞

CDF:      Φ 𝑧 ൌ න 𝜑 𝑡 𝑑𝑡 ൌ න
1

2𝜋
𝑒ି௧

మ/ଶ
௭

ିஶ

௭

ିஶ
𝑑𝑡

No closed form available for the CDF. However, note that:

න 𝑒ି௭
మ/ଶ

ஶ

ିஶ
𝑑𝑧 ൌ 2𝜋

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Standard Gaussian PDF/CDF

S

Next we move to the Normal, or Gaussian, distribution, starting from the standard
version. This slide is simply a summary of what previously shown in 8.2.7.

9
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9.0.2 Standard Gaussian Distribution (contd.)

 Properties: symmetry of PDF, symmetry of tail areas, of 𝑍 and െ𝑍

Mean:       𝐸ሼ𝑍ሽ ൌ
1

2𝜋
න 𝑧𝑒ି௭

మ/ଶ
ஶ

ିஶ
𝑑𝑧 ൌ 0

Variance ∗:      𝑉𝑎𝑟 𝑍 ൌ 𝐸 𝑍ଶ െ 𝐸 𝑍 ଶ ൌ
1

2𝜋
න 𝑧ଶ𝑒

ି௭మ

ଶ
ஶ

ିஶ
𝑑𝑧 ൌ

ൌ
2

2𝜋
െ𝑧𝑒ି௭

మ/ଶቚ
଴

ஶ
൅ න 𝑒

ି௭మ

ଶ
ஶ

଴
𝑑𝑧 ൌ

2

2𝜋
0 ൅

2𝜋
2

ൌ 1

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Standard Gaussian PDF/CDF

(integrating by parts)

*Using 8.3.3 LOTUS (W8)

The variance is again calculated using the Week 8 formula in Section 8.3.4, 𝑉𝑎𝑟 𝑋 ൌ
𝐸 𝑋ଶ െ 𝐸 𝑋 ଶ, whereby 𝐸 𝑍 =0.

𝐸{𝑍^2 } itself is calculated using LOTUS, 8.3.3, which states that 𝐸 𝑔 𝑋 ൌ
׬ 𝑔 𝑥 𝑓௑ 𝑥 𝑑𝑥
ஶ
ିஶ
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9.0.2 Gaussian Distribution

 Gaussian (or Normal) distribution with any mean 𝜇 and variance 𝜎: 
location‐scale transformation of the standard Normal

𝑋 ൌ 𝜇 ൅ 𝜎𝑍

𝑋~𝒩 𝜇,𝜎ଶ

Mean∗:      𝐸 𝑋 ൌ 𝐸 𝜇 ൅ 𝜎𝑍 ൌ 𝐸ሼ𝜇ሽ ൅ 𝜎𝐸ሼ𝑍ሽ ൌ 𝜇

Variance∗∗:       𝑉𝑎𝑟ሼ𝑋ሽ ൌ 𝑉𝑎𝑟 𝜇 ൅ 𝜎𝑍 ൌ 𝑉𝑎𝑟 𝜎𝑍 ൌ 𝜎ଶ𝑉𝑎𝑟 𝑍 ൌ 𝜎ଶ

 Standardisation process (from 𝑋 back to 𝑍):

for 𝑋~𝒩 𝜇,𝜎ଶ ,  
𝑋 െ 𝜇
𝜎

~𝒩 0,1

| C. Bruschini, E. Charbon | 2025

µ‐3𝜎 µ‐2𝜎 µ‐𝜎  µ       µ+𝜎 µ+2𝜎 µ+3𝜎

µ‐3𝜎 µ‐2𝜎 µ‐𝜎  µ       µ+𝜎 µ+2𝜎 µ+3𝜎

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Gaussian PDF/CDF

*Using linearity property (W8)
** Using 8.3.4 (W8)

The same properties for a distribution with any mean 𝜇 and variance 𝜎 are then 
derived by using a location‐scale transformation (𝑋 ൌ 𝜇 ൅ 𝜎𝑍).

We employ the linearity property of the Mean (8.3.3) and the properties of the 
Variance in 8.3.4.

11
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9.0.2 Gaussian Distribution (contd.)

 General Gaussian CDF 𝐹 𝑥 and PDF 𝑓 𝑥 :

CDF:       𝐹 𝑥 ൌ  Φ
𝑥 െ 𝜇
𝜎

PDF:       𝑓 𝑥 ൌ  𝜑
𝑥 െ 𝜇
𝜎

1
𝜎

 Proof:

𝐹 𝑥 ൌ 𝑃ሼ𝑋 ൑ 𝑥ሽ ൌ 𝑃
𝑋 െ 𝜇
𝜎

൑
𝑥 െ 𝜇
𝜎

ൌ  Φ
𝑥 െ 𝜇
𝜎

𝑓 𝑥 ൌ
𝑑
𝑑𝑥

Φ
𝑥 െ 𝜇
𝜎

ൌ 𝜑
𝑥 െ 𝜇
𝜎

1
𝜎
ൌ

1

2𝜋𝜎
𝑒𝑥𝑝 െ

𝑥 െ 𝜇 ଶ

2𝜎ଶ

| C. Bruschini, E. Charbon | 2025

µ‐3𝜎 µ‐2𝜎 µ‐𝜎  µ       µ+𝜎 µ+2𝜎 µ+3𝜎

µ‐3𝜎 µ‐2𝜎 µ‐𝜎  µ       µ+𝜎 µ+2𝜎 µ+3𝜎

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Gaussian PDF/CDF

S

To complete the picture, we show how the PDF and CDF of the general and standard 
Gaussian are linked – see the first two equations, already detailed in 8.2.7. 

12
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9.0.2 Gaussian Distribution (contd.)

 Important properties – if 𝑋~𝒩 𝜇,𝜎ଶ ,

𝑃 𝑋 െ 𝜇 ൏ 𝜎 ൎ 0.68

𝑃 𝑋 െ 𝜇 ൏ 2𝜎 ൎ 0.95

𝑃 𝑋 െ 𝜇 ൏ 3𝜎 ൎ 0.997

Full Width Half Maximum FWHM ൌ 𝑃 𝑋 െ 𝜇 ൏ 1.175𝜎

𝐹𝑊𝐻𝑀 ൌ 2 2 ln 2𝜎 ൎ 2.355 𝜎

| C. Bruschini, E. Charbon | 2025

µ‐3𝜎 µ‐2𝜎 µ‐𝜎  µ       µ+𝜎 µ+2𝜎 µ+3𝜎

µ‐3𝜎 µ‐2𝜎 µ‐𝜎  µ       µ+𝜎 µ+2𝜎 µ+3𝜎

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.4

Gaussian PDF/CDF

FWHM
Q

The standard deviation 𝜎 and FWHM of a Gaussian distribution are linked as shown in 
this slide. Note that in some communities it is preferred practice to quote the 
standard deviation (e.g. physics), in others the FWHM (e.g. engineering).

NB: the relationship shown here is strictly speaking only valid for a Gaussian 
distribution! 

13
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9.0.2 Gaussian Distribution – Example 1

| C. Bruschini, E. Charbon | 2025

Example of complete PET
detection module

R. Walker et al., IISW, 2013

Silicon photomultiplier 
(SiPM) tile (example: onsemi)

Scintillating crystal 
(LYSO)

Let’s now have a look at concrete examples from engineering and physics, linked to 
some of the distributions which we have seen before, and the corresponding 
measurement techniques.

The first one involves a PET (photo)detection module, to detect the gammas coming 
from the patient and extract the so‐called line of response (LOR). We already 
discussed such modules in Section 8.2.9. 

Left: schematic of detection module – shown here in simplified form as a single block 
– and the main scintillation light PDF, enabling the measurement of energy, time‐of‐
arrival and position.

Bottom: example of a photodetector in the form of an array of silicon 
photomultipliers.

Right: a scintillator, built of small separate scintillating crystals (called “needles”) 
rather than a monolithic block, sitting on top of a photodetector.

14
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9.0.2 Gaussian Distribution – Example 1

| C. Bruschini, E. Charbon | 2025

S. Gundacker et al., Experimental time resolution limits of modern SiPMs and TOF‐PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

S. Gundacker et al., Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis, JINST 8 (2013).

Simplified experimental set‐up

Experimental results 
(T = Coincidence Time Resolution = T2‐T2)

See also 
slide 27

F. Gramuglia, EPFL Thèse 8720 (2022).

Left: example of a real experimental distribution of the timing difference of gamma 
events detected on a given LOR (line of response), by two scintillating crystals placed 
face‐to‐face. Same set‐up as in Section 8.3.5.

Such timing distributions can be measured for example with the analog experimental 
set‐up shown on the right (lab implementation for research purposes): a small 
radioactive source is placed between the two scintillating crystals. Their light output 
is measured by silicon photomultipliers, read out by dedicated amplifiers. The latter 
allow to extract the total charge in each SiPM electrical scintillation pulse, 
corresponding to the total released energy (i.e. the gamma energy), as well as the 
scintillation time (or time‐of‐arrival of the gamma), by placing a threshold which 
triggers an inverter.

NB: these quantities can also be measured in a digital way, by detecting individual 
photons and adding them up digitally, and measuring the time‐of‐arrival of one of 
them (e.g. the first) or more than one with time‐to‐digital converters (Section 9.3.4).

15
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9.0.2 Gaussian Distribution – Example 2

(A) Non‐Gaussian behavior – exponential tail – of 
the SPADs timing uncertainty (jitter noise) due to 
carrier diffusion ‐> (B) revised junction design

| C. Bruschini, E. Charbon | 2025
C. Niclass et al., A 128×128 Single‐Photon Image Sensor With Column‐Level 10‐Bit Time‐to‐Digital Converter Array. IEEE JSSC 43 (2008).

A. Ulku et al., A 512×512 SPAD Image Sensor With Integrated Gating for Widefield FLIM, IEEE JSTQE 25 (2019).

C. Veerappan & E. Charbon, A Low Dark Count p‐i‐n Diode Based SPAD in CMOS Technology, IEEE TED 63 (2016).

BLUE laser
(405 nm)

RED laser
(637 nm)

A)

B)

Another example of distributions (see also section 8.2.9 Example 3).

Left: how does the precision – or timing jitter – of the photodetector come into play? 
The SPAD response is not infinitely short, but characterised by a Gaussian central 
section, and an exponential (diffusion) tail on the right. These parts are linked to the 
device structure (bottom right), process properties and resulting electric field 
distributions.

Q: How can the SPAD’s IRF be determined? One method consists in illuminating 
directly the device and timestamping each photon, to then build a histogram. Note 
also the difference between linear and logarithmic scales!

Top right: timing response of a SPAD when illuminated with lasers of different 
wavelengths.
Q: why do you think that there should be a difference? Where are blue vs. red 
photons preferentially absorbed in silicon? Which is the link to the SPAD structure?

16
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9.0.3 Binomial Distribution

 Suppose that 𝑛 independent Bernoulli trials are performed. 
Let 𝑝 be the probability of success, 1 െ 𝑝 the probability of 
failure, 𝑋 (RV) the number of successes. 

 The distribution of 𝑋 is called binomial distribution Binሺ𝑛, 𝑝ሻ
with parameters 𝑛 and 𝑝 if:

PMF:         𝑃 𝑋 ൌ 𝑘 ൌ
𝑛
𝑘

𝑝௞ 1 െ 𝑝 ௡ି௞

Mean:         𝐸 𝑋 ൌ ෍𝑘
𝑛
𝑘
𝑝௞ 1 െ 𝑝 ௡ି௞

௡

௞ୀ଴

ൌ 𝑛𝑝

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 3.3

Binomial distribution (see 8.2.2): recap of its PMF and calculation of its mean value.

NB: the binomial coefficient 
௡
௞ reads “n choose k”.

17
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9.0.3 Binomial Distribution

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 9.3

S

18
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9.0.4 Poisson Distribution

 Definition: a random variable 𝑋~Pois 𝜆  has a Poisson 
distribution with parameter 𝜆 if its PMF:

PMF:       𝑃 𝑋 ൌ 𝑘 ൌ
𝑒ିఒ𝜆௞

𝑘!
,  𝑘 ൌ 0,1,2, …

Mean:      𝐸 𝑋 ൌ 𝑒ିఒ ෍𝑘
𝜆௞

𝑘!

ஶ

௞ୀ଴

ൌ 𝜆

Variance:       𝑉𝑎𝑟 𝑋 ൌ 𝐸 𝑋ଶ െ 𝐸 𝑋 ଶ ൌ

ൌ 𝜆 1 ൅ 𝜆 െ 𝜆ଶ ൌ 𝜆

NB:      Taylor series: ෍
𝜆௞

𝑘!

ஶ

௞ୀ଴

ൌ 𝑒ఒ

| C. Bruschini, E. Charbon | 2025

Pois(2) PMF Pois(2) CDF

Pois(5) PMF Pois(5) CDF

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.7

Poisson distribution (see 8.2.5): recap of its PMF, and calculation of its mean and 
variance.

Note that a) the Poisson distribution is characterised by a single parameter (𝜆), and b) 
that its mean is equal to its variance!

NB: details of the intermediate steps are in Blitzstein Section 4.7, a bit involved for 
the variance calculation. The Taylor expansion is used in some of them.

19
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9.0.4 Poisson Distribution (contd.)

 The Poisson distribution has the following properties:

1. If 𝑋~Pois 𝜆ଵ and 𝑌~Pois 𝜆ଶ and 𝑋 and 𝑌 are 
independent, then the distribution of

𝑋 ൅ 𝑌~Pois 𝜆ଵ ൅ 𝜆ଶ

2. If 𝑋~Pois 𝜆ଵ and 𝑌~Pois 𝜆ଶ and 𝑋 and 𝑌 are 
independent, then the conditional distribution of 𝑋
given 𝑋 ൅ 𝑌 ൌ 𝑛 is:

𝑃ሺ𝑋 ൌ 𝑘|𝑋 ൅ 𝑌 ൌ 𝑛ሻ~Bin 𝑛, 𝜆ଵ/ሺ𝜆ଵ ൅ 𝜆ଶ ሻ

| C. Bruschini, E. Charbon | 2025

Pois(2) PMF Pois(2) CDF

Pois(5) PMF Pois(5) CDF

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 4.7

S

Properties of the Poisson distribution. The first one is interesting: the average of 𝑋 ൅
𝑌, being 𝑋 𝑎𝑛𝑑 𝑌 two independent Poissonian random variables, is again Poissonian,
with average value equal to the sum of the average values.

20
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Poisson Distribution vs. Light Sources

 Non‐classical light: Sub‐Poissonian ‐> antibunched (anticorrelated)

 Coherent light source (Laser): Poissonian, random spacing (uncorrelated)

 Thermal Light: Super‐Poissonian, Bose‐Einstein distribution with zero 
counts as most probable count (bunched, positively correlated)

However, in practice it defaults to Gaussian due to the very low 
coherence time, O(ps), and the corresponding experimental difficulties

Experimentally one can use pseudothermal light*.

https://demonstrations.wolfram.com/PhotonNumberDistributions/

| C. Bruschini, E. Charbon | 2025

https://www.stmarys‐ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf 

http://physics.gu.se/~tfkhj/lecture_X_differential_transmission‐2.pdf

By Ajbura ‐ Vectorised version of File:Photon 
bunching.png, CC BY‐SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid
=73299604

*E.g. scattering of a laser beam on a
rotating ground glass disc

Is light always distributed in a Poissonian way?

Not necessarily: some sources have non‐Poissonian distributions, such as thermal 
ones (super‐Poissonian ‐> bunched photon arrival times, resulting in a Bose‐Einstein 
distribution with zero counts as most probable value, but in practice difficult to 
observe due to the very low coherence times and the corresponding experimental 
difficulties). 

In the case of coherent light sources (e.g. laser), the resulting Poissonian distribution 
can be derived directly from first principles.

Certain non‐classical quantum light sources allow to reach sub‐Poissonian
distributions, and thus sub shot‐noise‐limited behaviour.

Bottom: example of antibunched, random and bunched light sources. 
__________________
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Poisson Distribution vs. Light Sources

𝑛ത = average photon number

 Non‐classical light: Sub‐Poissonian
𝝈 ൏ 𝒏ഥ

 Coherent light source (Laser): Poissonian

𝑷 𝒏 ൌ
𝒏ഥ𝒏

𝒏!
𝒆ି𝒏ഥ ,𝝈 ൌ 𝒏ഥ

For large photon numbers, the relative fluctuations 𝝈 𝒏ഥ⁄ tend to 0

 Thermal Light: Super‐Poissonian, Bose‐Einstein distribution

𝑷 𝒏 ൌ 𝟏 െ 𝒆ିℏ𝝎 𝒌𝑩𝑻⁄ 𝒆ି𝒏ℏ𝝎 𝒌𝑩𝑻⁄ ൌ
𝒏ഥ𝒏

𝒏ഥ ൅ 𝟏 𝒏ା𝟏 ,𝒏ഥ ൌ 𝒆ℏ𝝎 𝒌𝑩𝑻⁄ െ 𝟏
ି𝟏

,

𝝈 ൌ 𝒏ഥ𝟐 ൅ 𝒏ഥ  ሺ𝒇𝒐𝒓 𝑻 ≪ 𝝉𝒄ሻ ൐ 𝒏ഥ
For large photon numbers, the relative fluctuations 𝝈 𝒏ഥ⁄ tend to 1

| C. Bruschini, E. Charbon | 2025

https://www.stmarys‐ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf 

http://physics.gu.se/~tfkhj/lecture_X_differential_transmission‐2.pdf

Pseudothermal light source

Advanced Lab Course (F‐Praktikum), Exp. 45, Photon Statistics, v. Aug. 21 2017 T. Stagner et al., Step‐by‐step guide to reduce spatial
Coherence of laser light using a rotating ground glass 
diffuser, OSA Applied Optics 56 (2017).

Which are the variances of these three types of light sources emitting a given average 
photon number 𝑛ത ?

 Compare the resulting three standard deviation values in absolute terms, and also 
relative ones, i.e. compared to the average (this ratio is basically the source’s SNR = 
signal‐to‐noise ratio).

Thermal light: For large average photon numbers 𝑛ത, the quantum mechanical Bose‐
Einstein distribution becomes identical to the Boltzmann distribution (classical limit) 
 exponential.

Right: experimental set‐up allowing to create in the lab in a simple way a 
“pseudothermal” light source.

22
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9.0.5 Exponential Distribution

 A continuous variable 𝑌~Expo 𝜆 has an Exponential distribution with 
parameter 𝜆 if:

PDF:       𝑓௒ 𝑦 ൌ 𝜆𝑒ିఒ௬,  𝑦 ൐ 0

CDF:       𝐹௒ 𝑦 ൌ 1 െ 𝑒ିఒ௬,  𝑦 ൐ 0

 If we start from 𝑋~𝐸𝑥𝑝𝑜 1 :

𝐸ሼ𝑋ሽ ൌ න 𝑥𝑒ି௫
ஶ

଴
𝑑𝑥 ൌ 1

𝐸ሼ𝑋ଶሽ ൌ න 𝑥ଶ𝑒ି௫
ஶ

଴
𝑑𝑥 ൌ 2

𝑉𝑎𝑟ሼ𝑋ሽ ൌ 𝐸ሼ𝑋ଶሽ െ 𝐸ሼ𝑋ሽ ଶ ൌ 1 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.5

Expo(1)

Exponential distribution: note again the presence of one single variable 𝜆.

Bottom: calculation of the mean and variance for the standard version = 𝐸𝑥𝑝𝑜 1 .
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9.0.5 Exponential Distribution (contd.)

 In general, for 𝑌 ൌ 𝑋/𝜆~Expo 𝜆  (scaling), we get:

Mean:      𝐸ሼ𝑌ሽ ൌ
1
𝜆
𝐸ሼ𝑋ሽ ൌ

1
𝜆

Variance:      𝑉𝑎𝑟ሼ𝑌ሽ ൌ
1
𝜆ଶ
𝑉𝑎𝑟ሼ𝑋ሽ ൌ

1
𝜆ଶ

 Recap: «An Expo 𝜆 RV represents the waiting time for the first success
in continuous time; the parameter 𝜆 can be interpreted as the rate at
which successes arrive.”

 Memoryless property: «conditional on our having waited a certain
amount of time (s) without success, the distribution of the remaining
wait time (t) is exactly the same as if we hadn’t waited at all.»

Memoryless:      𝑃ሼ𝑌 ൒ 𝑠 ൅ 𝑡|𝑌 ൒ 𝑠ሽ ൌ 𝑃ሼ𝑌 ൒ 𝑡ሽ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.5

Expo(1)

Ex

Using a scaling transformation (𝑌 ൌ 𝑋/𝜆), we can calculate the mean and variance for
a general exponential distribution.

The standard deviation is equal to the mean, which implies a broad distribution!

Note the interpretation in terms of success rate (e.g. events/second) and number of 

successes 𝜆𝑡 (e.g. events) in a given amount of time 𝑡.

The Memoryless property is demonstrated in one of the exercises and is also 
illustrated in the next slide.
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9.0.5 Exponential Distribution (contd.)

 Memoryless property: «conditional on our having waited a certain
amount of time (s) without success, the distribution of the remaining
wait time (t) is exactly the same as if we hadn’t waited at all.»

Memoryless:      𝑃 𝑌 ൒ 𝑠 ൅ 𝑡|𝑌 ൒ 𝑠 ൌ 𝑃 𝑌 ൒ 𝑡

𝑒.𝑔.𝑃ሼ𝑌 ൒ 40|𝑌 ൒ 30ሽ ൌ 𝑃ሼ𝑌 ൒ 10ሽ

𝑒.𝑔.𝑃ሼ𝑌 ൒ 70|𝑌 ൒ 60ሽ ൌ 𝑃ሼ𝑌 ൒ 10ሽ

PDF:  𝑓௒ 𝑦 ൌ 𝜆𝑒ିఒ௬, 𝑦ଶ ൌ 𝑦ଵ ൅ ∆𝑡

𝑓௒ 𝑦ଶ
𝑓௒ 𝑦ଵ

ൌ
𝜆𝑒ିఒ௬మ

𝜆𝑒ିఒ௬భ
ൌ 𝑒ିఒ ∆௧ ൌ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑒.𝑔.  
𝑓௒ 𝑦ଶ ൌ 4 𝜆ିଵ

𝑓௒ 𝑦ଵ ൌ 3 𝜆ିଵ
ൌ
𝑓௒ 𝑦ଶ ൌ 2 𝜆ିଵ

𝑓௒ 𝑦ଵ ൌ 1 𝜆ିଵ
ൌ 𝑒ିଵ ൌ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.5

Expo(1)
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9.0.5 Exponential Distribution – Example 1 & 2

Radioactive decay

| C. Bruschini, E. Charbon | 2025

Decay Law:      
𝑑𝑁
𝑑𝑡

ൌ െ𝜆𝑁 ⇒ 𝑁 𝑡 ൌ 𝑁଴𝑒ିఒ௧

 Universal law of radioactive decay: 
• A nucleus has “no memory”
• A nucleus does not age with the passage of time
‐> a nucleus is equally likely to decay at any instant in time 
‐> constant decay probability

EN Wikipedia Radioactive_decay / Fluorescence

 NB: The number of decays in a given time interval in a 
radioactive sample is Poisson distributed…
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Fluorescence lifetime 𝑆ଵ ൌ 𝑆ଵ ଴𝑒ି୻௧

𝑆ଵൌ concentration of excited state molecules

Γൌ decay rate ൌ inverse of fluorescence lifetime ൌ average length of time
to decay from one state to another

Jablonski diagram

Q

Let’s have a look at two examples of important exponential distributions, namely the 
radioactive decay, and the fluorescence of molecules.

Right: Jablonksi diagram, showing the main transitions which come into play after a 
molecule has been excited. The non‐radiative transitions, e.g. due to vibrational 
states,  are “needed” so that the wavelength of the emission is larger than the 
wavelength of the absorption (Stokes shift) – see also Section 8.2.9.

This has the advantage that the excitation light beam can be separated from the 
emission light beam. In addition, given that there are multiple transition possibilities, 
the absorption and emission spectra are broad rather than sharp.

Q: which are the typical lifetimes involved?  see again Section 8.2.9.
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9.0.5 Exponential Distribution – Example 3

| C. Bruschini, E. Charbon | 2025

Gundacker S, Auffray E, Pauwels K and Lecoq P Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a
general study of prompt photons to achieve 10 ps in TOF‐PET. IOP Phys. Med. Biol. 61 2802–37

“Physical experiments are imprecise and generate 
errors handled by statistical methods.” 

(I. Vardi)

See also slide 14

Fast vs. 
“slow” 
scintillation 
photons in a 
heavy 
scintillating 
crystal

Q

See section 8.2.9 Example 4:

These are the results of a precision (timing) measurement, for example using a 
radioactive source and detecting as many visible light photons as possible emitted 
from a scintillating crystal excited by a radioactive source, event after event, similarly 
to a TCPSC (time‐correlated single‐photon counting) method.

We can then accumulate all time of arrival data into a histogramme such as the one 
shown above, which tells us for example that the light intensity decay is bi‐
exponential rather than monoexponential (left), and that there is actually a small 
fraction of photons that are emitted right after the gamma conversion (“prompt” 
events on the right). These could be very useful to improve the timing precision of 
the PET measurements, and therefore the final image quality!

Q: Note also the fluctuations on the right side of the scale, where the recorded data 
is quite small. “Physical experiments are imprecise and generate errors handled by 
statistical methods.”  (I. Vardi)
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9.0.6 Gamma Distribution

 Let 𝑿𝟏,𝑿𝟐, … ,𝑿𝒏 be 𝒏 i.i.d. 𝐄𝐱𝐩𝐨 𝝀 . Then:

𝒀 ൌ 𝑿𝟏 ൅⋯൅ 𝑿𝒏~𝐆𝐚𝐦𝐦𝐚 𝒏,𝝀

 The Gamma is nothing else but the distribution obtained
by summing up 𝑛 independent exponential distributions.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,) Gamma(a,)

S

The Gamma distribution comes into play in Appendix A and B. We are not going to 
discuss it in detail during the lecture.

NB: this has nothing to do with the detection of gamma rays!
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9.0.6 Gamma Distribution (contd.)

 For the more general gamma distribution 
𝑌 ൌ 𝑋/𝜆~Gamma 𝑎, 𝜆 , by simple transformation, we 
obtain:

Mean:        𝐸 𝑌 ൌ
1
𝜆
𝐸 𝑋 ൌ

𝑎
𝜆

Second Moment:        𝐸 𝑌ଶ ൌ
1
𝜆ଶ
𝐸 𝑋 ൌ

𝑎 ሺ𝑎 ൅ 1ሻ
𝜆ଶ

Variance:        𝑉𝑎𝑟 𝑌 ൌ
1
𝜆ଶ
𝑉𝑎𝑟ሼ𝑋ሽ ൌ

𝑎
𝜆ଶ

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,)

‐> calculate mean/variance for some examples

Gamma(a,)

‐> See Appendix A for details

S
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Take‐home Messages/W9‐1

 Random Variables (RVs):

 Distributions: Uniform, Gaussian, Binomial

 Distributions: Poisson ↔ Exponential

… and their PDF, CDF, Mean, Variance

 Practical examples!

 Scintillation light (two crystals in coincidence) – combination of 
distributions ↔ experimental set‐up

 Timing jitter – combination of distributions ↔ experimental set‐
up

 Poisson Distribution vs. Light Sources

 Fluorescence lifetime & exponential decay 

 Scintillation light (one single crystal) ↔ experimental set‐up

| C. Bruschini, E. Charbon | 2025

First recap section: we summarise here the main definitions, results and examples 
discussed so far. They should be clear and understood.
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Probability distributions – Connections & the Big Picture

| C. Bruschini, E. Charbon | 2025
J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Cover page.

Final note: many of the distributions which we have encountered are interconnected! 
As an example, we have seen the link between a Poisson and an exponential 
distributions, but there are far more. More details are provided in the 
Blitzstein/Hwang.
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Outline

8.1  Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0  Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025

32



Slideaqualab 33Metrology: Elements of Statistics

9.1.1 Random Process

 A Random (or stochastic) Process (RP) is a time‐varying function that 
assigns the outcome of a random experiment to each time instant 𝑋 𝑡

Example: a current fluctuating due to thermal noise (‐> Week 10), 
the growth of a bacterial population, the movement of a gas 
molecule [Wikipedia Stochastic Process]

 For fixed 𝑡, a Random Process is a Random Variable

 A Random Process can therefore be viewed as a collection of an infinite 
number of Random Variables. Given that 𝑋௜ ൌ 𝑋ሺ𝑡௜ሻ:

joint PDF:       𝑓௑ሺ𝑋ଵ,𝑋ଶ, … ,𝑋௡, 𝑡ଵ, 𝑡ଶ, … , 𝑡௡ሻ

 A Random Process can be either continuous or discrete

| C. Bruschini, E. Charbon | 2025

H. Bilgekul, Slides for the course “EE‐461 Communication System II”, EMU 

Original uploader was 
Sullivan.t.j at English 
Wikipedia. – 3D Brownian 
motion process. This 
mathematical image was 
created with Mathematica., 
CC BY‐SA 3.0, 
https://commons.wikimedia.
org/w/index.php?curid=224
9027

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 

We now generalize a random variable and describe the characteristics of a Random 
Process, which is basically a collection of Random Variables as a function of time.
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9.1.1 Random Process – Example

| C. Bruschini, E. Charbon | 2025

Extension to all possible outcomes of the underlying random
experiment ‐> Ensemble of signals (= set of all possible 
sample functions)

H. Bilgekul, Slides for the course “EE‐461 Communication System II”, EMU 

E
n
s
e
m
b
l
e

Time

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 

This slide is key in understanding the properties of a Random Process as an ensemble 
of signals = outcomes of different trials, and how it can be analysed from an 
ensemble perspective (“vertically”, i.e. at a fixed time), or from a time perspective 
(“horizontally”, i.e. for a given experiment).  This notation will be used in the 
following slides as well.
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9.1.1 Random Process – Example

 Example: Noise is generally modeled as a random process, i.e. a collection 
of random variables, one for each time instant t in interval ]‐∞,+∞[

| C. Bruschini, E. Charbon | 2025

µXሺtሻ

t

Fixed t: Random Process becomes a Random Variable 

E. Charbon, “Image Sensors – ET 4390 Course Slides”, Delft 2016
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9.1.1 Random Process (contd.) – Characterization/1

 A Random Process is characterized by the same functions already explained for 
RVs, but which now depend on 𝒕, i.e.:

CDF:       𝐹௑ 𝑥, 𝑡 ൌ 𝑃ሼ𝑋ሺ𝑡ሻ ൑ 𝑥ሽ

PDF:       𝑓௑ 𝑥, 𝑡 ൌ
𝑑𝐹௑ 𝑥, 𝑡

𝑑𝑥

Mean:       𝑚௑ 𝑡 ൌ 𝑋ሺ𝑡ሻ ൌ 𝐸 𝑋 𝑡 ൌ න 𝑥 𝑓௑ 𝑥, 𝑡  𝑑𝑥
ஶ

ିஶ

Second Order Moment:       𝑋ଶሺ𝑡ሻ ൌ 𝐸 𝑋ଶ 𝑡 ൌ න 𝑥ଶ 𝑓௑ 𝑥, 𝑡  𝑑𝑥
ஶ

ିஶ

Variance:        𝑉𝑎𝑟 𝑋 𝑡 ൌ 𝐸 𝑋 𝑡 െ 𝑚௑ 𝑡
ଶ
ൌ න 𝑥 െ 𝑚௑ 𝑡

ଶ
𝑓௑ 𝑥, 𝑡  𝑑𝑥

ஶ

ିஶ

| C. Bruschini, E. Charbon | 2025

H. Bilgekul, Slides for the course “EE‐461 Communication System II”, EMU 

𝑋ሺ𝑡ሻ= random variable at time t

Ensemble
averages 

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 

We can extend the previously acquired statistical definitions and tools to a Random 
Process, which now become dependent on the new variable time 𝒕.

At a fixed time 𝒕, we are basically carrying out Ensemble averages (see the vertical 
arrow).
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9.1.1 Random Process (contd.) – Characterization/2

 However, in order to characterize a RP, we need to introduce two more 
functions, e.g. to indicate how rapidly a RP changes in time:

Auto െ covariance:       𝐶௑௑ 𝑡ଵ, 𝑡ଶ ൌ 𝐶𝑜𝑣ሼ𝑋 𝑡ଵ ,𝑋ሺ𝑡ଶሻሽ

Auto െ correlation:       𝐾௑௑ 𝑡ଵ, 𝑡ଶ ൌ 𝐸ሼ𝑋 𝑡ଵ · 𝑋ሺ𝑡ଶሻሽ

NB:      𝐶௑௑ 𝑡ଵ, 𝑡ଶ ൌ 𝐸 𝑋 𝑡ଵ െ 𝑚௑ 𝑡ଵ 𝑋 𝑡ଶ െ 𝑚௑ 𝑡ଶ ൌ
          ൌ 𝐾௑௑ 𝑡ଵ, 𝑡ଶ െ 𝑚௑ 𝑡ଵ 𝑚௑ሺ𝑡ଶሻ

 In a similar way we can also define:

Cross െ covariance:       𝐶௑௒ 𝑡ଵ, 𝑡ଶ ൌ 𝐶𝑜𝑣ሼ𝑋 𝑡ଵ ,𝑌ሺ𝑡ଶሻሽ

Cross െ correlation:       𝐾௑௒ 𝑡ଵ, 𝑡ଶ ൌ 𝐸ሼ𝑋 𝑡ଵ · 𝑌ሺ𝑡ଶሻሽ

| C. Bruschini, E. Charbon | 2025

NB: in general, the autocorrelation 
is the correlation of the signal with 
a delayed copy of itself 
(similarity between observations 
as a function of the time lag 
between them)
[Wikipedia “autocorrelation”]

Cross‐correlation: same but 
between two series

H. Bilgekul, Slides for the course “EE‐461 Communication System II”, EMU 

NB: extended here to two RPs X and Y

𝑋ሺ𝑡ଵሻ= random variable at time 𝑡ଵ
𝑋ሺ𝑡ଶሻ= random variable at time 𝑡ଶ

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 

Of particular importance in the characterisation of a Random Process are the auto‐
covariance and auto‐correlation, which basically determines how similar the random 
variable distribution is at two different times 𝑡ଵ and 𝑡ଶ. 

NB: an extension to more than one random process is also possible (last two 
equations), but this will not be studied in further detail.
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9.1.1 Random Process (contd.) – Example, non‐stationary

| C. Bruschini, E. Charbon | 2025

M. A. Karami et al., Random Telegraph Signal in Single‐Photon Avalanche Diodes, International Image Sensor Workshop, Bergen, 2009

An example of a non‐stationary Random Process is provided by the noise behaviour 
of irradiated SPADs, which can exhibit a so‐called RTS (Random Telegraph Signal) 
behaviour over long periods of time. The noise level, or Dark Count Rate (DCR), does 
basically jump between two or more different levels. It will be discussed in more 
detail in the next lecture and is shown here for 3 different devices of the same type.
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9.1.2 Stationary Random Process

 We characterize the RP on how their statistical properties change in 
time. If they do not change, we call the RP stationary. Hence:

𝑓௑ 𝑥, 𝑡 ൌ 𝑓௑ሺ𝑥ሻ

𝑚௑ 𝑡 ൌ 𝑋ሺ𝑡ሻ ൌ 𝐸 𝑋 𝑡 ൌ න 𝑥 𝑓௑ 𝑥, 𝑡  𝑑𝑥
ஶ

ିஶ
ൌ 𝜇௑

𝑉𝑎𝑟 𝑋 𝑡 ൌ 𝐸 𝑋 𝑡 െ 𝑚௑ 𝑡
ଶ
ൌ න 𝑥 െ 𝑚௑ 𝑡

ଶ
𝑓௑ 𝑥, 𝑡  𝑑𝑥

ஶ

ିஶ
ൌ 𝜎ଶ

 Weaker form: in Wide‐Sense Stationary RPs, in addition to a constant 
mean, the autocorrelation function only depends on the time difference, 
but not on the absolute position in time:

𝐾௑௑ 𝑡, 𝑡 ൅ 𝜏 ൌ 𝐾௑௑ 𝜏      ሺor equivalently 𝐾௑௑ 𝑡ଵ, 𝑡ଶ ൌ 𝐾௑௑ 𝑡ଶ െ 𝑡ଵሻ

| C. Bruschini, E. Charbon | 2025

H. Bilgekul, Slides for the course “EE‐461 Communication System II”, EMU 

Ensemble
averages 

Random Processes

Wide‐sense stationary

Strict‐sense stationary

???

WSS random process 
does not drift with 
time

Ex

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 

The behaviour of a Random Process is not always easy to characterise. A special sub‐
category is represented by a stationary RP, whose statistical properties don’t change 
over time ‐ which does obviously not mean that the values which the underlying 
random variables assume are constant!

A weaker form is represented by Wide‐Sense Stationary RPs. An analytical example 
will be shown in the exercises.

NB: for WSS, the variance would “automatically” also be constant. (‐> R. Mauro p. 10, 
(2.22)).
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9.1.2 Stationary Random Process – Example

𝑓௑ 𝑥, 𝑡 ൌ 𝑓௑ሺ𝑥ሻ

𝑚௑ 𝑡 ൌ 𝑋ሺ𝑡ሻ ൌ 𝜇௑

𝑉𝑎𝑟 𝑋 𝑡 ൌ 𝜎ଶ

| C. Bruschini, E. Charbon | 2025

µX

t

E. Charbon, “Image Sensors – ET 4390 Course Slides”, Delft 2016
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9.1.2 Stationary Random Process (contd.)

 For a Wide‐sense Stationary Random Process 𝑋ሺ𝑡ሻ, the autocorrelation function has the following 
properties:

1. 𝐾௑௑ 𝑡ଵ, 𝑡ଵ ൌ 𝐾௑௑ 𝑡ଶ, 𝑡ଶ ൌ 𝐾௑௑ 0 ൌ 𝐸 𝑋ଶ 𝑡 ൌ 𝑋ଶ 𝑡 ൒ 0 (⟹𝐾௑௑ 0 = total power 
of random signal 𝑋 𝑡 , does not change in time)

2. 𝐾௑௑ 𝜏 ൌ 𝐾௑௑ െ𝜏

3. lim
ఛ →ஶ

𝐾௑௑ሺ𝜏ሻ ൌ lim
ఛ →ஶ

𝐸 𝑋 𝑡 · 𝑋 𝑡 ൅ 𝜏 ൌ

ൌ 𝐸 𝑋 𝑡  𝐸 𝑋 𝑡 ൅ 𝜏 ൌ 𝑋 𝑡  ଶ (example: average or DC power of random signal 𝑋 𝑡 )

4. 𝐾௑௑ 𝜏 ൑ 𝐾௑௑ 0         for all 𝜏

| C. Bruschini, E. Charbon | 2025

H. Bilgekul, Slides for the course “EE‐461 Communication System II”, EMU 

𝐾௑௑ 𝜏

F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 

The autocorrelation function of wide‐sense stationary RPs has the following 
properties. NB:

1. Reuses the main property of the autocorrelation function of a WSS RP, i.e.

𝐾௑௑ 𝑡ଵ, 𝑡ଶ ൌ 𝐾௑௑ሺ𝑡ଶ െ 𝑡ଵሻ, and that 𝑋ଶሺ𝑡ሻ ൌ 𝐸 𝑋ଶ 𝑡

1. and 3.: note the difference between the total power of a signal 𝑋ଶ 𝑡 and its 

average or DC power 𝑋 𝑡  .

3. 
‐ First line: assumption that two RVs at very distant times ( 𝜏 → ∞) are basically 
uncorrelated ‐> 𝐸 𝑋𝑌 ൌ 𝐸 𝑋 𝐸 𝑌 …

‐ Second line: the mean is constant for a WSS RP ‐>  𝐸 𝑋 𝑡 ൌ  𝐸 𝑋 𝑡 ൅ 𝜏 . But 
𝐸 𝑋 𝑡 ൌ  𝑋ሺ𝑡ሻ…
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9.1.3 Ergodicity

 “A Random Process is ergodic if any sample function of the process takes 
all possible values in time with the same relative frequency that an 
ensemble will take at any given instant”. Basically, its statistical properties 
can be deduced from a single, sufficiently long, random sample. 
[Wikipedia] Hence:

𝑋ሺ𝑡ሻ ൌ 𝐸 𝑋 𝑡 ൌ lim
்→ஶ

1
𝑇
න 𝑥 𝑡  𝑑𝑡
்/ଶ

ି்/ଶ
ൌ 𝑋 𝑡

𝐾௑௑ 𝜏 ൌ 𝐸 𝑋 𝑡 · 𝑋 𝑡 ൅ 𝜏 ൌ lim
்→ஶ

1
𝑇
න 𝑥 𝑡  𝑥∗ሺ𝑡 െ 𝜏ሻ 𝑑𝑡
்/ଶ

ି்/ଶ
ൌ 𝒦௑௑ 𝜏

where  𝑋 𝑡 is the time‐average mean of the RP 𝑋 𝑡 and 𝒦௑௑ 𝜏 is the 
time‐average autocorrelation function.

| C. Bruschini, E. Charbon | 2025

Random Processes

Wide‐sense stationary

Strict‐sense stationary

Ergodic

Ensemble function Time average

H. Bilgekul, Slides for the course “EE‐461 Communication System II”, EMU 

“The ergodic hypothesis is that 
personal experience over time of 

a single individual reflects the 
current statistics of the general 

population.” 

(I. Vardi)
F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU 

A very special class of Random Processes are the ergodic ones, whose statistical 
properties can be deduced from a single, sufficiently long, random sample. This 
basically allow us to replace the complex ensemble averages, which would need a 
very large number of trials, with a simpler time average over a sufficiently long period 
of time.
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Random Processes

Wide‐sense stationary

Strict‐sense stationary

Ergodic

43Metrology: Elements of Statistics

Take‐home Messages/W9‐2

 Random Process:

 Definition, Ensemble vs. Time

 CDF, PDF, Moments, Autocorrelation

 Wide‐sense & strict‐sense stationary

 Ergodicity

| C. Bruschini, E. Charbon | 2025

Time

E
n
s
e
m
b
l
e 

Second recap section: we summarise here the main definitions, results and examples 
discussed in this middle section.
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Outline

8.1  Introduction to Probability

8.2 Random Variables

8.3 Moments

8.4 Covariance and Correlation

9.0  Random Variables/2

9.1 Random Processes

9.2 Central Limit Theorem

9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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9.2.1 Law of Large Numbers

 Law of large numbers: describes the behavior of the sample mean of 
i.i.d. random variables as the sample size grows

 Assume i.i.d. 𝑋ଵ,𝑋ଶ,𝑋ଷ, … with finite mean  and finite variance 𝜎ଶ

Sample Mean:        𝑋௡ ൌ
𝑋ଵ ൅ ⋯𝑋௡

𝑛

 𝑋௡ itself a random variable with

Mean:       𝐸ሼ𝑋௡ሽ ൌ
1
𝑛
𝐸ሼ𝑋ଵ ൅ ⋯𝑋௡ሽ ൌ

1
𝑛
𝐸ሼ𝑋ଵሽ ൅ ⋯൅ 𝐸ሼ𝑋௡ሽ ൌ 𝜇

Variance:       Varሼ𝑋௡ሽ ൌ
1
𝑛ଶ
𝑉𝑎𝑟ሼ𝑋ଵ ൅ ⋯𝑋௡ሽ

ൌ
1
𝑛ଶ
ሺ𝑉𝑎𝑟ሼ𝑋ଵሽ ൅ ⋯൅ 𝑉𝑎𝑟ሼ𝑋௡ሽሻ ൌ

𝜎ଶ

𝑛

| C. Bruschini, E. Charbon | 2025

NB: i.i.d. = independent and 
identically distributed Random 
Variables, have the same PDF and 
are all mutually independent

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.2

Note the concept of i.i.d. random variables and how the sample mean, and its 
variance in particular, behave.

NB: the i.i.d. condition is probably a sufficient one, but not strictly necessary.

Q: which measurement examples and applications can you think of which exploit this 
property?
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9.2.1 Law of Large Numbers (contd.)

 Law of Large Numbers: as 𝑛 grows, the sample mean 𝑋௡ converges to
the true mean 

 Essential for simulations, statistics, etc. – implicitely used when we use:

1) the proportion of times that something happened as an approximation
to its probability,

2) the average value in the replications of some quantity to approximate its
theoretical average.

Example: improvement in LiDAR ranging precision…

…when accumulating timing measurements, as 1/n

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.2

Q

LIDAR example (see also Section 8.2.9): calculate the precision of one single time (= 
distance) measurement starting from an estimate of the timestamping precision, e.g. 
10‐100 ps. 

Q: what happens when averaging repetitive measurements?
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9.2.2 Central Limit Theorem

 Law of Large Numbers: as 𝑛 grows, the sample mean 𝑋௡ converges to 
the true mean 

But with which distribution?

Sum of a large number of i.i.d. random variables has an approximately 
Gaussian (normal distribution),

 regardless of the distribution of the individual RVs (could be 
anything!)

 very weak assumptions.

As 𝑛 → ∞, 𝑛
𝑋௡ െ 𝜇
𝜎

~𝒩 0,1

(i.e. the CDF of the l.h.s. approaches Φ, the CDF of the standard 
Gaussian distribution)

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.3

Q

NB: note that we are looking at the distribution of one specific random variable, the 
sample mean 𝑿𝒏. If one simply adds up the histograms in slide 49, the final 
distribution will the similar to the starting one!
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9.2.2 Central Limit Theorem (contd.)

• In other words: start with independent RVs from almost any distribution, discrete or continuous, 

‐> add them up

‐> distribution of the resulting RV has a Gaussian shape!

 The CLT is an asymptotic result. Approximation: for large 𝑛

𝑛
𝑋௡ െ 𝜇
𝜎

→ 𝒩 0,1

 NB: The distribution of the 𝑋௝ is still relevant, e.g. if highly skewed or multimodal, 𝑛 might need to 

be very large before the Gaussian approximation becomes accurate.

 Conversely, if the 𝑋௝ are already i.i.d. Normals (Gaussian), the distribution of 𝑋௡ is exactly 

𝒩 𝜇, ఙ
మ
௡⁄  for all n.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.3
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9.2.2 Central Limit Theorem ‐ Example

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.3

Starting 
distribution

Nothing else than 
Gamma(n,1)

Histograms of the 
distribution of 𝑋௡
for different 
starting
distributions of the 
𝑋௝ and increasing 
values of 𝑛.

Blitzstein Figure 10.5: Central limit theorem:

These are histograms of the distribution of 𝑋௡ for different starting distributions of 
the 𝑋௝ (indicated by the rows) and increasing values of n (indicated by the columns). 

Each histogram is based on 10,000 simulated values of 𝑋௡. Regardless of the starting 
distribution of the 𝑋௝, the distribution of 𝑋௡ approaches a Normal distribution as n

grows.

NB:  If one simply adds up the histograms, the final distribution will the similar to the 
starting one!
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9.2.2 Central Limit Theorem ‐ Example

 Poisson convergence to Gaussian: if
𝑌~𝑃𝑜𝑖𝑠 𝑛

we can consider 𝑌 as a sum of 𝑛 i.i.d. Pois(1) RVs.

For large 𝑛: 𝑌 → 𝒩 𝑛,𝑛

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 10.3
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Outline
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9.4 Accuracy, Precision and Resolution

| C. Bruschini, E. Charbon | 2025
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9.3 Elements of Estimation Theory

 Estimation theory has the purpose to solve one problem: given a set of data

𝑥ଵ, 𝑥ଶ, … , 𝑥ேିଵ

which depends on an unknown parameter vector 𝜃, determine an estimator

𝜃መ ൌ 𝑔ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥ேିଵሻ

where 𝑔 is some function.

 In other words, how do we use collected data to estimate unknown parameters of a 
distribution? 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.3
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9.3 Elements of Estimation Theory (contd.)

 In general, if we assume that 𝜃 is deterministic, we will have a classical 
estimation problem. It can be solved in the following ways, and many 
more:

1. Least Squares Estimator (LSE)

2. Minimum Variance Unbiased Estimator (MVU)

3. Maximum Likelihood Estimator (MLE)

4. Best Linear Unbiased Estimator (BLUE)

5. …

| C. Bruschini, E. Charbon | 2025

Ex

For this section, a general understanding is all right. You can get the essence also 
from some of the examples, like the BLUE estimator which is described later in the 
same section.

You might also need to be able to think a bit outside of the box and be able to reply 
to questions like “How can we for example estimate the lifetime of an exponential 
distribution from its samples” and the like.
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9.3.1 Elements of Estimation Theory – Simple Mean Example

 Simple example: estimate the mean of a sample of i.i.d. RVs 
𝑋ଵ,𝑋ଶ,𝑋ଷ, … ,𝑋௡

Sample Mean: 𝑋௡ ൌ
1
𝑛
෍𝑋௝

௡

௝ୀଵ

is an estimate of the population mean or true mean, 
𝐸ሼ𝑋௝ሽ = the mean of the distribution from which the 𝑋௝
were drawn.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 6.3

Note the difference betwen the true mean and its estimator 𝐸 𝑋௝
෣ ൌ 𝑋௡.
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9.3.2 Elements of Estimation Theory – LSE Example

Least Squares Estimator (LSE)

| C. Bruschini, E. Charbon | 2025

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 6.3

https://commons.wikimedia.org/wiki/File:Linear_regression.svg

A simple linear regression is shown on the left. On the top right, the data needs to be 
fit with a linear equation passing through the origin, i.e. characterised by a single 
variable, the slope shown in the bottom plot.
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9.3.3 Elements of Estimation Theory – MLE Example

Maximum Likelihood Estimator (MLE) to 
correct for the exponential count loss in 
binary, clock‐driven SPAD imagers

| C. Bruschini, E. Charbon | 2025

I. M. Antolovic et al, Nonuniformity Analysis of a 65‐kpixel CMOS SPAD Imager, IEEE Trans. on Electron Devices 63, 2016  

𝐶ெ:  Measured count rate ሺexternallyሻ

𝐶஽: Detected count rate ሺinternallyሻ

Q

Q

Example of a Maximum Likelihood Estimator: 

The first SwissSPAD camera has 512x128 pixels, with an architecture quite similar to 
one of the more advanced SwissSPAD2 sensor. 

The camera is basically recording individual binary frames at very high speed. Given 
that the in‐pixel memory is of one bit, it cannot differentiate when more than one 
photon was actually detected. At low photon counts this is not an issue, but as the 
light intensity, and thus the number of detections per frame CD increases (horizontal 
axis), some photon detections CM (vertical axis) are unavoidably lost. The response 
curve becomes logarithmic rather than binary.

Q: how can we estimate the true number of detected photons from the measured 
ones (basically inverting the curve shown above)? Which is the best estimator for the 
true number of detected photons?

 It turns out that the best estimator for CD is the maximum likelihood estimator 
shown in the bottom right equation.
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

Positron Emission 
Tomography 
Basics

L. Braga et al., ISSCC, 2013

GE Discovery IQ, Nov 2016

Example of another estimator (BLUE) used the PET application detailed in Section 
8.2.9.
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

Positron Emission 
Tomography 
Reconstruction 
Example

G. Nemeth, Mediso, Delft WS 2010
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025
Typ some 104 photons/scintillation, few 103 detected

Positron Emission Tomography Building Blocks & Main Variables

Problem: estimate the scintillation event time 𝑇଴ given a set of timing measurements 𝑡௤

Aim: obtain estimator with lowest variance (best timing precision)

R. Walker et al., IISW, 2013

One of the key variables for PET is CTR (Coincidence Resolving Time), which is 
basically determined by using two modules in coincidence and plotting the gamma 
interaction time differences. It ultimately tells us how good the timing resolution is.

The key question here is: supposing that I am working in a digital approach, where my 
detector delivers a set of timing measurements 𝑡௤

 which is the best estimate 𝑇଴෢ of the scintillation event time 𝑇଴?
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

E. Venialgo et al., 
NSS‐MIC, 2015

M. Fishburn, E. Charbon, 
NSS‐MIC, 2012

M. Fishburn, E. Charbon, 
IEEE TNS(57), 2010

LYSO: rise~70ps, fall~30ns

We can start with the PDF of the timing distribution of the scintillation photons 
(visible light), as illustrated above. In general the scintillation model is a double 
exponential, as already seen.

We might be tempted to say that the first detected photon is the best (lowest 
variance), but this is not necessarily true – see also the next slides. There is indeed the 
influence of the finite rise time in scintillators and of the transit time spread (TTS) in 
photomultiplier tubes (PMTs) (Gatti and Svelto 1966), plus the inevitable contribution 
of noise sources.

Quantitative example [S. Gundacker et al.]: Measurement results with LSO:Ce
codoped 0.4%Ca scintillators with a (finite!) rise time of rise ~ 70 ps, a fall time of fall
~ 30:3 ns and a total number of scintillation photons produced n=20’400 per 511keV 
gamma. LSO scintillator gives a photon detection rate of typically 100 photoelectrons 
per nanosecond.
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

Order 
Statistics

PDF of the qth photoelectron’s time‐of‐registration.
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1st photoelectron

40th photoelectron

30th photoelectron
20th photoelectron

E. Venialgo, E. Charbon et al., PMB 2015

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Theorem 8.6.4

Order statistics implies 
correlation between 
timestamps

𝑓 𝑡 ,𝐹ሺ𝑡ሻ = 
scintillation 
PDF/CDF
(previous slide)

How can we calculate the PDF of the first, second, etc photons, to better understand 
why the first detected photon is not necessarily the best (lowest variance)? We can 
temporally reorder them…

 Order Statistics: the PDF 𝑝௤ሺ𝑡ሻ is analytically given by the equation above. The 
variance of each detected photon does basically tell us how good it is at estimating 
the overall time of arrival, or scintillation event time, 𝑇଴.

NB: Seifert: The order statistics are NOT i.i.d. (the “initial” photons are).
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

D. Schaart, ANSRI 2016, 2016, Dublin, Ireland

Left: example of the PDF of the first, fifth, etc photons for a certain scintillator. The 
variance (see the FWHM) of the first one is clearly not the smallest!

Right: overall timing performance for different choices of timing estimators. In this 
case, using the n‐th timestamp (e.g. the first, second, or subsequent), does clearly not 
deliver the best (i.e. lowest) result, as obtained when using multiple timestamps.
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

A simple estimator 
approach: 

General estimator

Simple mean coeffs.

E. Venialgo, E. Charbon et al., PMB 2015

(𝑝 is one of 3 possible estimators)

(𝑝 ൌ 1 estimator)

Q

D. Schaart, ANSRI 2016, 2016, Dublin, Ireland

The first equation shows the general expression for the timestamp estimator 𝑇଴෢. A 
simple one could just be the mean of the measured timestamps!

Image source: derived from Fig. 3 in Venialgo 2015 (refers to EndoTOF case with 48 
TDCs).
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9.3.4 Elements of Estimation Theory – BLUE Example

| C. Bruschini, E. Charbon | 2025

General estimator

BLUE coeffs.  (correlation matrix)

1 24 48
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Photoelectron order number

Δ 
T

 (
ps

)

1 24 48
Number of TDCs

single photoelectron

BLUE

 Assuming large number of measurements

 Other Estimator Approaches: Best Linear Unbiased Estimator (BLUE)

E. Venialgo, E. Charbon et al., PMB 2015

(𝑝 ൌ 3 estimator)

A more complex estimator would be the BLUE one. The analytical formula for the 
weights 𝑤௤ is obtained from the scintillation model and the order statistics, the 

covariance matrix 𝑪 is then obtained from experimental measurements.

NB: d = column vector filled with ones and with a length equal to the number of 
utilized timestamps.
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Outline
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| C. Bruschini, E. Charbon | 2025
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9.4 Error Analysis

 The aim of error analysis is to quantify and record the errors associated 
with the inevitable spread in a set of measurements.

 Confidence boundaries represent the quality of the approximation given 
by the uncertainty. 

Example: the six‐sigma method, 5 sigma limit (CERN)

 Uncertainties can be associated to random errors (hence influencing the 
variance of the measurement distribution) or to systematic errors (acting 
on the mean value of the measurement distribution).

| C. Bruschini, E. Charbon | 2025

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 1
https://universe‐review.ca/R15‐20‐accelerators03.htm

Q

Higgs boson

Hint of new discovery ‐>
statistical fluctuation…

NB: different communities have different conventions  have a look at some of the 
error bars used in the biosciences…
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9.4.1 Accuracy

Accuracy ‐> mean

 The accuracy of a measurement gives a notion of the mean
value of the set of measurements distribution with respect to
the real value.

 An accurate measurements distribution will hence have a
very small systematic error, but could be affected by a large
spread in the data (high variance).

 Accuracy can be enhanced in the experimental real life by
means of calibration techniques.

| C. Bruschini, E. Charbon | 2025

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 1
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9.4.1 Accuracy – Example

| C. Bruschini, E. Charbon | 2025

Calibration of a 
Time‐to‐Digital 
converter
S. Burri, EPFL, MDPI 
Instruments, 2018

Q
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9.4.2 Precision

Precision ‐> spread (variance)

 The precision of a measurement gives information about
the spread of the measured set of data collected by the
measurement.

 A precise measurement distribution will have a low
dispersion of data (hence a small variance), but it might
have a mean value very distant from the real one.

 In order to enhance precision, the most simple way is to
increase the size of the sample data. In fact, as shown
previously, for experimental data the variance decreases
linearly with the number of samples collected.

| C. Bruschini, E. Charbon | 2025

I.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 1
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9.4.2 Accuracy vs. Precision

| C. Bruschini, E. Charbon | 2025
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9.4.3 Resolution

 The resolution of a measurement is the smallest change in the 
underlying physical quantity that produces a response in the 
measurement. [Wikipedia]

 In case of an ADC (analog‐to‐digital converter), the resolution is 
given by one bit.

Example: for an oscilloscope with an 8 bits ADC, set at 100 
mV/div (i.e. for a total screen width of 800 mV), the 
resolution of each point collected is given by:

8 bits ൌ 2଼ different values → 𝑅𝑒𝑠 ൌ
800
256

 𝑚𝑉 ൌ 3.125 𝑚𝑉

| C. Bruschini, E. Charbon | 2025
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Take‐home Messages/W9‐3

 Law of Large Numbers:

 Concept of i.i.d. random variables

 Mean and Variance

 Central Limit Theorem

 Estimation Theory:

 Examples of estimators, MLE (Maximum Likelihood 
Estimator)

 Example: Positron Emission Tomography ↔ different time‐
of‐arrival estimators

 Precision, Accuracy, Resolution

| C. Bruschini, E. Charbon | 2025

Third and final recap section: we summarise here the main definitions, results and 
examples discussed in this third and final section.
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Appendix A: Gamma Distribution – Gamma Function

 While the Exponential distribution represents the wait
time before the first success under the conditions of
memorylessness, the gamma distribution represents the
total waiting time for multiple successes (hence it is the
sum of multiple exponential distributions).

 We first define the gamma function as:

Γ 𝑎 ൌ න 𝑥௔𝑒ି௫
ஶ

଴

𝑑𝑥
𝑥

,   𝑎 ൐ 0

 The gamma function has the following properties:

Γ 𝑎 ൅ 1 ൌ 𝑎 Γ 𝑎

Γ 𝑛 ൌ 𝑛 െ 1 !

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4
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Appendix A: Gamma Distribution (contd.)

 Then, we say that 𝑋 has a gamma distribution (we will
write 𝑋~Gamma 𝑎, 1 ) if:

PDF:       𝑓௑ 𝑥 ൌ
1

Γ 𝑎
 𝑥௔𝑒ି௫

1
𝑥

, 𝑥 ൐ 0

 From the gamma distribution of 𝑋~Gamma 𝑎, 1 , we get,
for 𝜆 ൐ 0, the more general 𝑌 ൌ 𝑋/𝜆~Gamma 𝑎, 𝜆 :

𝑓௒ 𝑦 ൌ 𝑓௑ 𝑥
𝑑𝑥
𝑑𝑦

ൌ
1

Γ 𝑎
𝜆𝑦 ௔𝑒ିఒ௬

1
𝜆𝑦

𝜆

hence

PDF:       𝑓௒ 𝑦 ൌ
1

Γ 𝑎
𝜆𝑦 ௔𝑒ିఒ௬

1
𝑦

, 𝑦 ൐ 0

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,)
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Appendix A: Gamma Distribution (contd.)

 From the PDF of the gamma distribution just obtained
𝑌~Gamma 𝑎, 𝜆 , it can be shown that the Gamma is
nothing else but the distribution obtained by summing up
𝑎 independent exponential distributions. In fact, for
𝑎 ൌ 1:

PDF:       𝑓௒ 𝑦 ൌ
1

Γ 𝑎
𝜆𝑦 ௔𝑒ିఒ௬

1
𝑦

, 𝑦 ൐ 0

reduces to

PDF:       𝑓௒ 𝑦 ൌ 𝜆𝑦 𝑒ିఒ௬
1
𝑦
ൌ 𝜆 𝑒ିఒ௬, 𝑦 ൐ 0

which is the exponential distribution.

 Follows that, let 𝑋ଵ,𝑋ଶ, … ,𝑋௡ be 𝑛 i.i.d. Expo 𝜆 . Then:

𝑌 ൌ 𝑋ଵ ൅⋯൅ 𝑋௡~Gamma 𝑛, 𝜆

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 8.4

Gamma(a,)
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Appendix A: Gamma Distribution (contd.)

 For a 𝑋~Gamma 𝑎, 1 , it follows:

Mean:        𝐸 𝑋 ൌ න
1

Γ 𝑎
𝑥௔ାଵ𝑒ି௫

𝑑𝑥
𝑥

ஶ

଴
ൌ
Γ 𝑎 ൅ 1
Γ 𝑎

ൌ 𝑎

Second Moment:        𝐸 𝑋ଶ ൌ න
1

Γ 𝑎
𝑥௔ାଶ𝑒ି௫

𝑑𝑥
𝑥

ஶ

଴
ൌ

ൌ
Γ 𝑎 ൅ 2
Γ 𝑎

ൌ 𝑎ሺ𝑎 ൅ 1ሻ

Variance:        𝑉𝑎𝑟 𝑋 ൌ 𝐸 𝑋ଶ െ 𝐸 𝑋 ଶ ൌ

ൌ 𝑎 𝑎 ൅ 1 െ 𝑎ଶ ൌ 𝑎
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Appendix A: Gamma Distribution (contd.)

 For the more general gamma distribution 
𝑌 ൌ 𝑋/𝜆~Gamma 𝑎, 𝜆 , by simple transformation, we 
obtain:

Mean:        𝐸 𝑌 ൌ
1
𝜆
𝐸 𝑋 ൌ

𝑎
𝜆

Second Moment:        𝐸 𝑌ଶ ൌ
1
𝜆ଶ
𝐸 𝑋 ൌ

𝑎 ሺ𝑎 ൅ 1ሻ
𝜆ଶ

Variance:        𝑉𝑎𝑟 𝑌 ൌ
1
𝜆ଶ
𝑉𝑎𝑟ሼ𝑋ሽ ൌ

𝑎
𝜆ଶ

| C. Bruschini, E. Charbon | 2025
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Gamma(a,)

‐> calculate mean/variance for some examples
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Appendix A: Gamma Distribution (contd.)

| C. Bruschini, E. Charbon | 2025
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Gamma(a,)

‐> calculate mean/variance 
for some examples

Mean: 
𝑎
𝜆

Variance:
𝑎
𝜆ଶ
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Appendix B: Poisson Process

 Definition: a sequence of arrivals in continuous time with rate 𝜆 is a (1D) Poisson process with rate 
𝜆 if the following two conditions hold:

1) The number of arrivals that occur in an interval of length 𝑡 is a Pois 𝜆𝑡  RV.

2) The numbers of arrivals that occur in disjoint intervals – e.g. (0,10), [10,12) and [15,∞) –
are independent of each other. 

 If 𝑇௝ is the time of the 𝑗‐th arrival, 𝑁 𝑡 is the number of events up to the time 𝑡, follows:

𝑃 𝑇ଵ ൐ 𝑡 ൌ 𝑃 𝑁 𝑡 ൌ 0 ൌ 𝑒ିఒ௧

so 𝑇ଵ has an Exponential distribution (𝑇ଵ~Expo 𝜆 ), hence 𝑇௝, being the sum of 𝑗 i.i.d. exponentials, 
is a Gamma distribution (𝑇௝~Gamma 𝑗, 𝜆 ), and the interarrival times are i.i.d. Expo 𝜆 RVs. 

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 5.6, 13
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Appendix B: Poisson Process

 NB: i.i.d. = independent and identically distributed Random Variables, have the same PDF and are 
all mutually independent

 “Confirmation” that the Exponential distribution is closely connected to the Poisson distribution!

 Examples of Poisson processes:

 1D: cars passing by a highway checkpoint; 

 2D: flowers in a meadow; 

 3D: stars in a region of the galaxy.”

Dark Counts and “real” detections in a SPAD sensor

| C. Bruschini, E. Charbon | 2025
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Appendix B: Poisson Process

 Timeline:  0,൅∞ but it could also be
െ∞,൅∞

 To generate 𝑛 arrivals from a Poisson process 
with rate 𝜆:

1. Generate 𝑛 i.i.d. Expoሺ𝜆ሻ RVs: 
𝑋ଵ,𝑋ଶ, … ,𝑋௡

2. For 𝑗 ൌ 1, 2, … ,𝑛 set 𝑇௝ ൌ 𝑋ଵ ൅ ⋯൅ 𝑋௝

 Then we can take the 𝑇ଵ, … ,𝑇௡ to be the arrival 
times.

| C. Bruschini, E. Charbon | 2025

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 13

Simulate Poisson Processes in 1D

Note: interarrival times are i.i.d., but the arrivals
are not evenly spaced ‐> there is a lot of 
variability in the interarrival times, which 
produces Poisson clumping
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Appendix B: Poisson Process

 A Poisson Process has the following three properties:

1. Conditioning: let  𝑁 𝑡 , 𝑡 ൐ 0 be a Poisson 
Process with rate 𝜆 and 𝑡ଶ ൐ 𝑡ଵ. Then the 
conditional distribution stands:

𝑁 𝑡ଵ |𝑁 𝑡ଶ ൌ 𝑛~Bin 𝑛,
௧భ
௧మ

2. Superposition: let  𝑁ଵ 𝑡 , 𝑡 ൐ 0 and 
𝑁ଶ 𝑡 , 𝑡 ൐ 0 be two independent Poisson 
Processes with rates 𝜆ଵ and 𝜆ଶ. Then the 
combined process 𝑁 𝑡 ൌ 𝑁ଵ 𝑡 ൅ 𝑁ଶ 𝑡 is a 
Poisson process with rate 𝜆ଵ ൅ 𝜆ଶ.

| C. Bruschini, E. Charbon | 2025

Conditioning

Superposition

Thinning

J.K. Blitzstein, J. Hwang, Introduction to Probability, 1st ed., 2015, Chap. 13

83



Slideaqualab 84Metrology: Elements of Statistics

Appendix B: Poisson Process

 A Poisson Process has the following three properties:

3. Thinning: let  𝑁 𝑡 , 𝑡 ൐ 0 be a Poisson 
Process with rate 𝜆, and classify each event at 
the arrival as either type‐1 events (with 
probability 𝑝) or type‐2 events (with 
probability 1 െ 𝑝), independently. Then the 
type‐1 events form a Poisson process with 
rate 𝜆𝑝, the type‐2 events form a Poisson 
process with rate 𝜆ሺ1 െ 𝑝ሻ and they are 
independent.
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