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Reference Books (Weeks 8&9)

@ J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015

1 A. Papoulis, Probability, Random Variables and Stochastic Processes, 3™ ed., 1991
(11 S.M. Ross, Introduction to Probability Models, 10t ed., 2009

LI 1.G. Hughes, T.P.A. Hase, Measurements and their Uncertainties, 1 ed., 2010

11 G.E.P. Box, J.S. Hunter, W.G. Hunter, Statistics for Experimenters, 2" ed., 2005

(11 J.R. Taylor, An Introduction to Error Analysis, 2™ ed., 1997
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The first reference, by Blitzstein, was used extensively throughout this lecture as well
as the following one. It should still be available from the EPFL library and is a
suggested read for these topics.

NB: in general, see also the reference box at the bottom of the slides for notes on the
exact chapters, etc.




Week 8 Summary ©,

8.1 Introduction to Probability: P{cA}, P{A|B} — Bayes' rule, Law of Total Prob. (LOTP),

Independent Variables

8.2 Random Variables: discrete/continuous RV X and its distribution expressed as
PMF px(x) / PDF fx(x) < CDF Fx(x)
Examples: Binomial: Bin(n, p), Poisson: X~Pois(4), Uniform: U~Unif(a, b), Normal (Gaussian):
X~N (u,0?), Exponential: X~Expo(1)
8.3 Moments: RV X: expected value (mean) E{X}, variance Var{X} = o2 /standard
deviation SD{X} = m = ¢ - n-th moment E{X™}, central moment /standardized moment

and their properties « moment generating function (MGF) ¢(t) = E{e**}
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The lecture starts with a small recap of the main elements of the previous week.




Week 8 Summary

8.4 Covariance and Correlation:

Multiple RVs — Multivariate distributions (8.1, 8.2 —): joint = marginal, = conditional, Independent

distributions

Covariance Cov{X,Y} - Corr{X,Y} (unitless version)

Variance of multivariate distributions:
1. Var{X+Y}=Var{X}+ Var{Y}+ 2Cov{X,Y}

2. Var{Xy + -+ Xp} = Var{X;} + - + Var{X,} + 23, Cov{X;, X;}
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The Outline covers both this lecture as well as the previous one.




9.0.1 Uniform Distribution @
Unif(0,1) PDF & CDF

= Uniform random variable in (a, b): completely random number between |
aandb "

-> PDF constant over chosen interval

PDF
1.0

05

= Uniform distribution U~Unif(a, b) in the interval (a, b) if:

1 1fa<x<b -0.5 0.0 05 1.0 1.5
PDF:  fy(x)={b—a - i
0 otherwise .
0 ifx<a L S
CDF: Fy(x) = b —a ifa<x<b b
1 ifx>b s
C}—05 00 05 1.0 15

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.2
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We will now look again at some of the most important random variable distributions
introduced in the previous lecture, and go further into their characteristics, in
particular their variance. As before, their properties are going to be illustrated by
means of examples from engineering and physics.

This slide is simply a summary of what previously shown in 8.2.6.

Can you think of random variables with this kind of distribution? E.g. (later)
qguantization noise...




9.0.1 Uniform Distribution (contd.)

Unif(0,1) PDF & CDF

= Probability is inversely proportional to length. o
= Evenin a sub-interval, we still have a uniform distribution . = ;
Q '
" EU) fb 1 P b :
ean: = X x = :
. b—a 2 ol ]
-0.5 0.0 05 1.0 15
5 b1 1b®—a’ - -
Second Order Moment: E{U*}= | «x dx == -
e b-—a 3 b—a -
1b3—a3 [a+b\ 5 S
Variance*: Var{U}=E{U?}— (E{U})? == - = °x
3 b—a 2
(b —a)? s
12 E
-05 0.0 05 1.0 15
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.2 *Using 8.3.4 (Wg) x
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We calculate the variance of a uniform distribution by using the Week 8 formula on
variance in Section 8.3.4, Var{X} = E{X?} — E{X}?, rather than a direct calculation.




9.0.2 Standard Gaussian Distribution @

Standard Gaussian PDF/CDF

05

= Gaussian (or Normal) distribution:
= well-known continuous distribution with a bell-shaped PDF

= widely used in statistics because of the central limit theorem (see next
section)

0.4

PDF
03

0.2

= Standard Gaussian Z~N(0,1):

0.1

0.0

PDF: (p(Z)ZEB_ZZ/Z, —o<z< 3 2 1 0 1 2 3

1.0

z

CDF: &(2) =fz (p(t)dtzf \/L_e-fz/Z dt

—o V2T

0.8

0.6

CDF

No closed form available for the CDF. However, note that:

f e 7’12 dz =21

0.4

0.2

0.0

T
-3 -2 - 0 1 2 3

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.4
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Next we move to the Normal, or Gaussian, distribution, starting from the standard
version. This slide is simply a summary of what previously shown in 8.2.7.




9.0.2 Standard Gaussian Distribution (contd.)

= Properties: symmetry of PDF, symmetry of tail areas, of Z and —Z

Mean: E{Z}= %fwze_zz/z dz=0
TJ-x

], 0 —z 2
Variance *: Var{Z} = E{Z?} — (E{Z})? =—j z%e 2 dz =
{z} {z°} - (E{Z}) Nz
2 o0 © —z2 2 V2r
=—<—Z€_22/2| +j erz>=— 0+—>=1
\21 0 o 2T 2

(integrating by parts)

*Using 8.3.3 LOTUS (W8)

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.4
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PDF

CDF
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0.2

0.0

Standard Gaussian PDF/CDF

3 2 4

-3 -2 -
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The variance is again calculated using the Week 8 formula in Section 8.3.4, Var{X} =

E{X?} — E{X}?, whereby E{Z}=0.

E{Z"2 }itself is calculated using LOTUS, 8.3.3, which states that E{g(X)} =

12 g fx()dx

10



9.0.2 Gaussian Distribution

= Gaussian (or Normal) distribution with any mean w and variance o
location-scale transformation of the standard Normal

X=u+oZ
X~N(u,02)
Mean*: E{X}=E{u+oZ}=E{u}+oE{Z}=pu

Variancex*:  Var{X} =Var{u + 6Z} = Var{cZ} = 6*Var{Z} = 5°

= Standardisation process (from X back to Z):

for X~ (u,02),

X—u
~ 1
S~V

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.4

** Using 8.3.4 (W8
agqua e (we)

PDF

CDF

0.8 1.0 2.0 01 02 03 04 05
L

0.6

=
=1

o
[S]

o
=1

Gaussian PDF/CDF

T T T
H-30 p-20 p-o

T
W

———
pto pi2o 3o

p-30 p-20 p-o

*Using linearity property (W8)

u

T
H+o p+20 p+3o

EPFL

The same properties for a distribution with any mean y and variance o are then

derived by using a location-scale transformation (X = u + oZ).

We employ the linearity property of the Mean (8.3.3) and the properties of the

Variance in 8.3.4.
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9.0.2 Gaussian Distribution (contd.) ©,

Gaussian PDF/CDF

= General Gaussian CDF F(x) and PDF f(x):

04 05

0.3

CDF:  F(x) = ® (%)

PDF

0.2

0.1

x—u)l
o

PDF:  f(x) = (p<

2.0

T
W30 W20 wo B o w20 pido

1.0

=  Proof:

X—u x—u X —U
F(x)=P{XSx}=P{ < }z(b( )

0.8

0.6

CDF
0.4

SN—
00 02

100 05 o (52 (-

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.4

T
p-30 p-20 p-o n H+o p+20 p+3o
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To complete the picture, we show how the PDF and CDF of the general and standard
Gaussian are linked — see the first two equations, already detailed in 8.2.7.




9.0.2 Gaussian Distribution (contd.)

Gaussian PDF/CDF

05

0.4

* Important properties — if X~N (u, 02),

PDF
03

0.2

P{IX — u| <o} ~ 0.68 ] FWHM
P{|X — u| < 26} ~ 0.95 SO A

1.0

P{|X — | < 30} ~ 0.997

0.8

0.6

Full Width Half Maximum (FWHM) = P{|X — u| < 1.1750} 5

0.4

0.2

FWHM = 2Vv2In20 = 23550

0.0

T
p-30 p-20 p-o n H+o p+20 p+3o

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 5.4
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The standard deviation o and FWHM of a Gaussian distribution are linked as shown in
this slide. Note that in some communities it is preferred practice to quote the
standard deviation (e.g. physics), in others the FWHM (e.g. engineering).

NB: the relationship shown here is strictly speaking only valid for a Gaussian
distribution!

13



9.0.2 Gaussian Distribution — Example 1

Example of complete PET

detection module Scintillating crystal
(LYSO)

gamma scintillator crystal
v y Spot Spatial Position (X;Y)
photon 3¢ y * )

I“\ y =)

Photons

|\ Pulse Arrival Time T

scintillation
event

e

—
20005

— Time

Pholons.
Photons

a
S
P

'\ Pulse Energy

photosensor

Time

T~

Silicon photomultiplier
(SiPM) tile (example: onsemi)
L) R. Walker et al., 1ISW, 2013
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Let’s now have a look at concrete examples from engineering and physics, linked to
some of the distributions which we have seen before, and the corresponding
measurement techniques.

The first one involves a PET (photo)detection module, to detect the gammas coming
from the patient and extract the so-called line of response (LOR). We already
discussed such modules in Section 8.2.9.

Left: schematic of detection module — shown here in simplified form as a single block
— and the main scintillation light PDF, enabling the measurement of energy, time-of-
arrival and position.

Bottom: example of a photodetector in the form of an array of silicon
photomultipliers.

Right: a scintillator, built of small separate scintillating crystals (called “needles”)
rather than a monolithic block, sitting on top of a photodetector.

14



9.0.2 Gaussian Distribution — Example 1 Simplified experimental set-up

Crystal

Energy Energy

amplifie——

[
left » right
Time < \ >Time
NINO . : NINO
SiPM

Pulse width 1

M

3 1/2 of maximum amplifi

i
(&)}

1/100 of
maximum |||

il

log10(Number of Counts)
[\v]

=y

-1000  -500 0 500 1000 Putes width 2
A T [pS] il Delay

Experimental results See also

(AT = Coincidence Time Resolution = T,-T,) slide 27

L) F. Gramuglia, EPFL Thése 8720 (2022).
L) S. Gundacker et al., Experimental time resolution limits of modern SiPMs and TOF-PET detectors exploring different scintillators and Cherenkov emission, PMB 65 (2020).

[LLJ s. Gundacker et al., Time of flight positron emission tomography towards 100ps resolution with L(Y)SO: an experimental and theoretical analysis, JINST 8 (2013).
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Left: example of a real experimental distribution of the timing difference of gamma
events detected on a given LOR (line of response), by two scintillating crystals placed
face-to-face. Same set-up as in Section 8.3.5.

Such timing distributions can be measured for example with the analog experimental
set-up shown on the right (lab implementation for research purposes): a small
radioactive source is placed between the two scintillating crystals. Their light output
is measured by silicon photomultipliers, read out by dedicated amplifiers. The latter
allow to extract the total charge in each SiPM electrical scintillation pulse,
corresponding to the total released energy (i.e. the gamma energy), as well as the
scintillation time (or time-of-arrival of the gamma), by placing a threshold which
triggers an inverter.

NB: these quantities can also be measured in a digital way, by detecting individual
photons and adding them up digitally, and measuring the time-of-arrival of one of
them (e.g. the first) or more than one with time-to-digital converters (Section 9.3.4).

15



RED laser
(637 nm)

BLUE laser
(405 nm)

9.0.2 Gaussian Distribution — Example 2

6 x10° : . . ' , 10
== §
- Gt T Zw
& 4r i@% E ]
[ 1 SBADjittertail fexp}—| |
Q o —IN, I I 1 10 — Excess bias: 3V
: % A) —Dxocia bise: 7V
a 2 —— Excess bias: 11V
abo i I 3 »
ot R Y Time (200 ps/div) Time (200 ps/div)
1t 20 22 24 26 28 30 @ )
Photon Arrival Time [ns] B) Radiation
0 ; H )
20 24 26 28 30
Photon Arrival Time {ns]
(A) Non-Gaussian behavior — exponential tail — of e

the SPADs timing uncertainty (jitter noise) due to
carrier diffusion -> (B) revised junction design

[C[] C. Veerappan & E. Charbon, A Low Dark Count p-i-n Diode Based SPAD in CMOS Technology, |EEE TED 63 (2016).

Substrate

:L:L A. Ulku et al., A 512x512 SPAD Image Sensor With Integrated Gating for Widefield FLIM, |IEEE JSTQE 25 (2019).

L] C. Niclass et al., A 128x128 Single-Photon Image Sensor With Column-Level 10-Bit Time-to-Digital Converter Array. IEEE JSSC 43 (2008).
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Another example of distributions (see also section 8.2.9 Example 3).

Left: how does the precision — or timing jitter — of the photodetector come into play?
The SPAD response is not infinitely short, but characterised by a Gaussian central
section, and an exponential (diffusion) tail on the right. These parts are linked to the
device structure (bottom right), process properties and resulting electric field
distributions.

Q: How can the SPAD’s IRF be determined? One method consists in illuminating
directly the device and timestamping each photon, to then build a histogram. Note
also the difference between linear and logarithmic scales!

Top right: timing response of a SPAD when illuminated with lasers of different
wavelengths.

Q: why do you think that there should be a difference? Where are blue vs. red
photons preferentially absorbed in silicon? Which is the link to the SPAD structure?




9.0.3 Binomial Distribution

= Suppose that n independent Bernoulli trials are performed.
Let p be the probability of success, 1 — p the probability of
failure, X (RV) the number of successes.

PMF
0z

= The distribution of X is called binomial distribution Bin(n, p)
with parameters n and p if:

PMF:  P{X =k} = (Z) Pk (1 — pynk

n

Mean: E{X} = Z k (Z) pFl—p)** =np
i=0

PMF

(L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 3.3
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.
Bin(100, 0.03) Bin(9, 4/5)

PMF

02

0.1

..

4 6 8 10

0.0

—

EPFL

Binomial distribution (see 8.2.2): recap of its PMF and calculation of its mean value.

NB: the binomial coefficient (Z) reads “n choose k”.
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9.0.3 Binomial Distribution

Bin(10, 1/2) Bin(10, 1/8)
< p
3 3
@ J @
3 g
w w
£°] £3
5 ‘ 5 [
ol o] e « 1.
5 I el L ——
o 2 4 6 8 10 0 2 4 6 8 10
x x
Bin(100, 0.03) Bin(9, 4/5)
: -
= =3
@ d «
i g
£21 £
5 3
i 1, . o
sl Ll Lty ¢ et LT
] 2 4 6 8 10 ] 2 4 6 8 10

(L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 9.3 *
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9.0.4 Poisson Distribution

= Definition: a random variable X~Pois(A4) has a Poisson

distribution with parameter A if its PMF: . pois(2) PMF Pois(2) COF
" 27 ~—0
e Ak N % ..
PMF: P{X=k}= o k=0,1.2,.. =] L8
- y :] —
Mean: E{X}ze‘)‘Zk—lzl ey { ‘ I S -
k=0 k! 3 I N N D SN 3.
- Pois(;) PMF Pois(;) CDF
Variance: Var{X} = E{X?} - (E{X})? = il & ]
=21+ -22=2 . . "°
o) Ak . " —o
. fage — A © o
NB: Taylorserles.Eﬂ—e gavTHHTTM 2ot
k=0 0 2 4 6 8 10 0 2 4 6 8 10
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 4.7
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Poisson distribution (see 8.2.5): recap of its PMF, and calculation of its mean and
variance.

Note that a) the Poisson distribution is characterised by a single parameter (1), and b)
that its mean is equal to its variance!

NB: details of the intermediate steps are in Blitzstein Section 4.7, a bit involved for
the variance calculation. The Taylor expansion is used in some of them.
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9.0.4 Poisson Distribution (contd.)

Pois(2) PMF

Pois(2) CDF

= The Poisson distribution has the following properties: - =X ]
1. If X~Pois(A;) and Y~Pois(1,) and X and Y are 2 e '_°
independent, then the distribution of 5;, S
X + Y~Pois(A, + A,) 51 { ‘ I
e I I N I 31 e
2. If X~Pois(4;) and Y~Pois(4,) and X and Y are . pols5) PMIE i poiss) oF
independent, then the conditional distribution of X ] L
givenX +Y =nis: 8] ER —
P(X = k|X +Y = n)~Bin(n, A, /(A4 + 1,)) —
g,vTIIIITT» ER "
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 4.7
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Properties of the Poisson distribution. The first one is interesting: the average of X +
Y, being X and Y two independent Poissonian random variables, is again Poissonian,

with average value equal to the sum of the average values.

20



Poisson Distribution vs. Light Sources

= Non-classical light: Sub-Poissonian -> antibunched (anticorrelated)

Laser Light

= Coherent light source (Laser): Poissonian, random spacing (uncorrelated)

However, in practice it defaults to Gaussian due to the very low ;..
coherence time, O(ps), and the corresponding experimental difficulties b 8

Experimentally one can use pseudothermal light*. “'\‘
. o . ‘*‘.‘“
https://demonstrations.wolfram.com/PhotonNumberDistributions/ e eneay

:4—‘[‘—0: \ se B o
QOO0 000 00 000 © 0 © 00 0 0 ©
] ]
:OO :O Q [ X X ] o Q0 O Q @ ®@ @ @0 O 0O By Ajbura - Vectorised version of File:Photon
T T bunching.png, CC BY-SA 4.0,

! ! https://commons.wikimedia.org/w/index.php?curid

loool © 000 0 000 © 00 000 00 73299604
1 ]

Photon detections as function of time for a) antibunched, b) random, and ¢) bunched light

*E.g. scattering of a laser beam on a

L) http://physics.gu.se/~tfkhj/lecture_X_differential_transmission-2.pdf ) .
rotating ground glass disc

L] https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf
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Is light always distributed in a Poissonian way?

Not necessarily: some sources have non-Poissonian distributions, such as thermal
ones (super-Poissonian -> bunched photon arrival times, resulting in a Bose-Einstein
distribution with zero counts as most probable value, but in practice difficult to
observe due to the very low coherence times and the corresponding experimental
difficulties).

In the case of coherent light sources (e.g. laser), the resulting Poissonian distribution
can be derived directly from first principles.

Certain non-classical quantum light sources allow to reach sub-Poissonian
distributions, and thus sub shot-noise-limited behaviour.

Bottom: example of antibunched, random and bunched light sources.

21



Poisson Distribution vs. Light Sources

n = average photon number
= Non-classical light: Sub-Poissonian
o<Vn
= Coherent light source (Laser): Pgi,slsonian
P(n) = %e‘ﬁ,a =n

For large photon numbers, the relative fluctuations o /7 tend to O

[LLJ Advanced Lab Course (F-Praktikum), Exp. 45, Photon Statistics, v. Aug. 21 2017
L) http://physics.gu.se/~tfkhj/lecture_X_differential_transmission-2.pdf
L] https://www.stmarys-ca.edu/sites/default/files/attachments/files/GriderJordanFinalReport_0.pdf

Pseudothermal light source

T. Stagner et al., Step-by-step guide to reduce spatial
[LI] coherence of laser light using a rotating ground glass
diffuser, OSA Applied Optics 56 (2017).
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Which are the variances of these three types of light sources emitting a given average
photon number n ?

- Compare the resulting three standard deviation values in absolute terms, and also
relative ones, i.e. compared to the average (this ratio is basically the source’s SNR =
sighal-to-noise ratio).

Thermal light: For large average photon numbers n, the quantum mechanical Bose-
Einstein distribution becomes identical to the Boltzmann distribution (classical limit)
- exponential.

Right: experimental set-up allowing to create in the lab in a simple way a
“pseudothermal” light source.

22



9.0.5 Exponential Distribution

= A continuous variable Y~Expo(4) has an Exponential distribution with
parameter A if:

PDF:  f,(y) = e, y >0
CDF: F(y)=1-e%, y>0

= |f we start from X~Expo(1):

E{X}=J xeXdx=1

0

E{Xz}zf x%e ™ dx =2
0

Var{X} = E{X?} — (E{xX})?* =1

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.5
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00 05 10 15 20 25 3.0

X

f T T T T T T
00 05 10 15 20 25 3.0

X

EPFL

Exponential distribution: note again the presence of one single variable A.

Bottom: calculation of the mean and variance for the standard version = Expo(1).
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9.0.5 Exponential Distribution (contd.)

Expo(1)

* |ngeneral, forY = X/A~Expo(1) (scaling), we get:

1 1
Mean: E{Y}= IE{X} =7

PDF
00 02 04 06 08 10 12

1 1
Variance: Var{Y} = A—ZVar{X} ==

= Recap: «An Expo(1) RV represents the waiting time for the first success 00 08 10 1e B0 20 80
in continuous time; the parameter A can be interpreted as the rate at

which successes arrive.”

1.0

0.8

= Memoryless property: «conditional on our having waited a certain
amount of time (s) without success, the distribution of the remaining
wait time (t) is exactly the same as if we hadn’t waited at all.»

Memoryless: P{Y =>s+t|Y =s}=P{Y >t} @

CDF
0.6

0.4

0.2

S T T T T T T
00 05 10 15 20 25 30
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15 ed., 2015, Chap. 5.5 X

aqua C. Brusc 1 | 202t 1 gy: Elements of Statistics Slide 2 EPFL

Using a scaling transformation (Y = X /1), we can calculate the mean and variance for
a general exponential distribution.

The standard deviation is equal to the mean, which implies a broad distribution!

Note the interpretation in terms of success rate (e.g. events/second) and number of
successes At (e.g. events) in a given amount of time t.

The Memoryless property is demonstrated in one of the exercises and is also
illustrated in the next slide.
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9.0.5 Exponential Distribution (contd.)

= Memoryless property: «conditional on our having waited a certain
amount of time (s) without success, the distribution of the remaining
wait time (t) is exactly the same as if we hadn’t waited at all.»
Memoryless: P{Y >s+t|Y =s}=P{Y >t}
e.g.P{Y > 40|Y = 30} = P{Y > 10}

e.g.P{Y = 70|Y = 60} = P{Y > 10}

PDF:  fy(3) =de™™,y, =y, + At

fr(y2) _Ae”h2 e

fr(1) T e~ T = constant

. fr(y, =471 _ fry, =227Y) _
I =340 fron=141)

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 5.5

aqua C. Brusc Charbon | 202¢ letrology: Elements of Statistics

~1 = constant

e

PDF
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CDF

1.0

04 06 08

0.2

0.0

Expo(1)

T T T T T T T
00 05 10 15 20 25 3.0

X
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X
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9.0.5 Exponential Distribution — Example 1 & 2

Radioactive decay Jablonski diagram
= Universal law of radioactive decay: 4 —o——— B
* Anucleus has “no memory” ? Non-radiative g
* A nucleus does not age with the passage of time S, 2 — transition §
->a nucleus is equally likely to decay at any instant in time 1 __17 ]
-> constant decay probability 0 3
o
aN —-At Ab ti 5
Decay Law: T —AN = N(t) = Nye sorption <
E
= NB: The number of decays in a given time interval in a Fluorescence g g
radioactive sample is Poisson distributed... o g
& 8 £
Fluorescence lifetime  [S1] = [Siloe™™ < $:
w3 8¢
S1= concentration of excited state molecules @ Sp 2 g g
1 — z8
I'= decay rate = inverse of fluorescence lifetime = average length of time 0 § 3
to decay from one state to another z _:é:
L] EN Wikipedia Radioactive_decay / Fluorescence Ground State
aqua C. Brusc Che ) | 2025 letrology: Elements of Statistic Slide 2 ePFL

Let’s have a look at two examples of important exponential distributions, namely the
radioactive decay, and the fluorescence of molecules.

Right: Jablonksi diagram, showing the main transitions which come into play after a
molecule has been excited. The non-radiative transitions, e.g. due to vibrational
states, are “needed” so that the wavelength of the emission is larger than the
wavelength of the absorption (Stokes shift) — see also Section 8.2.9.

This has the advantage that the excitation light beam can be separated from the
emission light beam. In addition, given that there are multiple transition possibilities,

the absorption and emission spectra are broad rather than sharp.

Q: which are the typical lifetimes involved? = see again Section 8.2.9.




9.0.5 Exponential Distribution — Example 3

. 80
25t 1=45.8ns R =8.2% 70 T..=8ps
2 W 1=365ns R =92% prompt/scintillation = 0.172%
g = 2 2 % 60 FaSt VS-
s 3 50 " ”
5 S slow
5 © 40
L 1.5 - . . .
€ . Ba scintillation
£ | =P 2 .
EIRY: : Ew photons in a
= - 10
0sC | 0 heavy
= 200 400 600 800 1000 1200 1400 ® jo4 105 106 107 108 109 110 . .
z 2 z 2R N ] i SCintillating
w=-2F i @ -2 i ‘ L
; 200 400 600 800 1000 1200 1400 6‘:’ 104 105 106 107 108 109 110 Crystal
A T [ns] A T[ns]
Figure 10. Scintillation decay and rise time of BGO measured with a time correlated single photon counting (TCSPC) setup using
511 keV annihilation gammas (Gundacker et al 2016b). The figure on the right hand side shows a pronounced Cherenkov peak at
the onset of the scintillation emission with a relative abundance of 0.172% compared to the total amount of photons detected by the
stop detector of the TCSPC setup.
” . . . .
Physical experiments are imprecise and generate
See also slide 14 errors handled by statistical methods.”
m Gundacker S, Auffray E, Pauwels K and Lecog P Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a (/ Vardl)

== general study of prompt photons to achieve 10 ps in TOF-PET. IOP Phys. Med. Biol. 61 2802-37

aqua C. Bruschini, E. Charbon | 2025 Vietrology: Elements of Statistics Slide 27 EPFL

See section 8.2.9 Example 4:

These are the results of a precision (timing) measurement, for example using a
radioactive source and detecting as many visible light photons as possible emitted
from a scintillating crystal excited by a radioactive source, event after event, similarly
to a TCPSC (time-correlated single-photon counting) method.

We can then accumulate all time of arrival data into a histogramme such as the one
shown above, which tells us for example that the light intensity decay is bi-
exponential rather than monoexponential (left), and that there is actually a small
fraction of photons that are emitted right after the gamma conversion (“prompt”
events on the right). These could be very useful to improve the timing precision of
the PET measurements, and therefore the final image quality!

Q: Note also the fluctuations on the right side of the scale, where the recorded data

is quite small. “Physical experiments are imprecise and generate errors handled by
statistical methods.” (I. Vardi)
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9.0.6 Gamma Distribution @

Gamma(a,1) Gamma(a,A)
Gamma(3, 1) Gamma(3, 0.5)
* LetXq, X5, ..., X, beniid. Expo(2). Then: & &
Y=X;+ -+ X,~Gamma(n, 1) ° g
0 5 10 5 2 0 5 10 5 20
* The Gamma is nothing else but the distribution obtained Gamma(io. ) . Gammae, 09)
by summing up n independent exponential distributions. °
:
° 0 5 10 15 20 © (IJ 5 10 15 20
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 8.4
aqua Charbon | 202¢ Vietrology: Elements of Statistics Slide 28 ePFL

The Gamma distribution comes into play in Appendix A and B. We are not going to
discuss it in detail during the lecture.

NB: this has nothing to do with the detection of gamma rays!
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9.0.6 Gamma Distribution (contd.) ©,

Gamma(a,1) Gamma(a,A)
Gamma(3, 1) Gamma(3, 0.5)
= For the more general gamma distribution
Y = X/A~Gamma(a, 1), by simple transformation, we s 5
obtain: . .
1 a
Mean: E{Y}=-E{X}=- R i
A A 3 x - 1Sy . : : :
0 L ¢ 10 15 20 ] -] 10 15 20
Second Moment:  E{Y?} = iE{X} _a@rl o = e
. 22 12 5
. 1 a .
Variance: Var{Y} = ﬁVar{X} =7 E, 58
-> See Appendix A for details 3 g
°3 5 10 ) 5 10 5 2
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 8.4 -> calculate mean/variancefor some examples

agua C. Brusc Charbon | 202 letrology: Elements of Statistics Slide 2 ePFL




Take-home Messages/W9-1

= Random Variables (RVs):
= Distributions: Uniform, Gaussian, Binomial
= Distributions: Poisson <> Exponential

... and their PDF, CDF, Mean, Variance

1T 1

1 )
QOO O 000 0O 00O ©O O ©Q 00 0 0 0

)
100 10 _© 000 © 00 © © © 0 o oo o o
T

1
I
T
1

)
1000, ©
)

000 0O 000 O 00 o0 00

t

Photon detections as function of ime for a) antibunched, b) random, and ¢) bunched light

= Practical examples! s, 2:3_}:::;:::“"6
= Scintillation light (two crystals in coincidence) — combination of é 1T
distributions <> experimental set-up
= Timing jitter — combination of distributions <> experimental set- Absorption
up Fluorescence
= Poisson Distribution vs. Light Sources %
= Fluorescence lifetime & exponential decay g s
= Scintillation light (one single crystal) <> experimental set-up Soi —
Gcr)ound State

aqua Charbon | 202% Vietrology: Elen

ents of Statistics Slide 30 ePFL

First recap section: we summarise here the main definitions, results and examples
discussed so far. They should be clear and understood.
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Probability distributions — Connections & the Big Picture

Gamma Negative
(Exponential, Binomial
Chi-Square) —- (Geometric)

Slide 31 =PFL

aqua C. Bruschini, E. Charbon | 2025

Final note: many of the distributions which we have encountered are interconnected!
As an example, we have seen the link between a Poisson and an exponential
distributions, but there are far more. More details are provided in the
Blitzstein/Hwang.
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8.2 Random Variables

8.3 Moments
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9.1 Random Processes
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9.3 Estimation Theory

9.4 Accuracy, Precision and Resolution
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9.1.1 Random Process

= A Random (or stochastic) Process (RP) is a time-varying function that L
assigns the outcome of a random experiment to each time instant X (t)

Example: a current fluctuating due to thermal noise (-> Week 10), !
the growth of a bacterial population, the movement of a gas
molecule [Wikipedia Stochastic Process]

=  For fixed t, a Random Process is a Random Variable

= A Random Process can therefore be viewed as a collection of an infinite

number of Random Variables. Given that X; = X(¢;): Original uploader was

Sullivan.t.j at English

Wikipedia. — 3D Brownian

jOint PDF: fX(Xli XZ’ ) X‘l’l' t1,tg, o) tn) motion process. This

mathematical image was

Il created with Mathematica.,

CC BY-SA 3.0,
. . . https://commons.wikimedia.
= A Random Process can be either continuous or discrete org/w/index php?eurid=224
9027
(L] H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU  [LL]l F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU

aqua Charbon | 202% Vietrology nents of Statistics

EPFL

We now generalize a random variable and describe the characteristics of a Random

Process, which is basically a collection of Random Variables as a function of time.
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9.1.1 Random Process — Example

Sample Extension to all possible outcomes of the underlying random
e experiment -> Ensemble of signals (= set of all possible

a1 | sample functions)

0 . | Outcome of the
‘%Avr% first trial of

the experiment

xp(1)

[ Time
Outcome of the
%%N second trial of

the experiment

m —oc 3 m®m» S m

: Outcome of the
E nth trial of

-T 0 ) +T  the experiment

t—
L] H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU L[] F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU

aqua C. Bruschin, £, Charbon | 202 tetclogy: Elements of Statst Sice ¢ EPFL

This slide is key in understanding the properties of a Random Process as an ensemble
of signals = outcomes of different trials, and how it can be analysed from an
ensemble perspective (“vertically”, i.e. at a fixed time), or from a time perspective
(“horizontally”, i.e. for a given experiment). This notation will be used in the
following slides as well.
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9.1.1 Random Process — Example

= Example: Noise is generally modeled as a random process, i.e. a collection
of random variables, one for each time instant t in interval ]-oo,+oo[

Hx ()

//JJIIIIIIHI LTTTTTTTTTT t

Fixed t: Random Process becomes a Random Variable

(L] E. Charbon, “Image Sensors — ET 4390 Course Slides”, Delft 2016

aqua C. Bruschini, E. Charbon | 2025 Vietrology: Elements of Statistics

EPFL
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9.1.1 Random Process (contd.) — Characterization/1

= A Random Process is characterized by the same functions already explained for
RVs, but which now depend on t, i.e.:

CDF:  Fy(x,t) = P{X(t) < x} X(t)= random variable at time t

dFy(x,t)

PDF:  fy(x,t) = — =

[ee)
}
Mean: my(t) = X(t) = E{X(t)} = J- x fx(x,t) dx
—0o0
Ensemble
Second Order Moment:  X2(t) = E{X?(t)} = f x2 fy(x,t) dx averages
2 o 2
Variance: Var{X(t)}=FE {(X(t) — mX(t)) } = f (x — mX(t)) fx(x,t) dx J
LI H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU O F Farahmand,ai%%s for the course “CES 540 Digital Communication”, Ch. 6, SSU
aqua C. Brusc Charbon | 202 letrology: Elements of Statistics Slide 3 ePFL

We can extend the previously acquired statistical definitions and tools to a Random
Process, which now become dependent on the new variable time t.

At a fixed time t, we are basically carrying out Ensemble averages (see the vertical
arrow).
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9.1.1 Random Process (contd.) — Characterization/2

* However, in order to characterize a RP, we need to introduce two more  X(t;)= random variable at time t;
functions, e.g. to indicate how rapidly a RP changes in time: X(t,)=random variable at time t,

Auto — covariance: CXX(tl' tz) — Cov{X(tl),X(tz)} NB: in general, the autocorrelation
is the correlation of the signal with

a delayed copy of itself

Auto — correlation: Kyx(ty, tz) = E{X(t1) - X(t2)} (similarity between observations
as a function of the time lag
NB:  Cxx(ty, t2) = E{[X(t1) — mx(t)][X(t2) — my(t2)]} = b\;t'\lix{eeg.th?m) tion”
= Kyx(t1, tz) — my(t)my(t2) [Wikipedia “autocorrelation”]
Cross-correlation: same but
= |n asimilar way we can also define: between two series
Cross — covariance:  Cyy(ty,t;) = Cov{X(ty),Y(t2)} NB: extended here to two RPs X and Y

Cross — correlation:  Kyy(ty,t;) = E{X(t;) - Y(t2)}

(L] H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU  [LL]l F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU

aqua Charbon | 2025 Vletrology: Elements of Statistics Slide 37 ePFL

Of particular importance in the characterisation of a Random Process are the auto-
covariance and auto-correlation, which basically determines how similar the random
variable distribution is at two different times t; and ¢,.

NB: an extension to more than one random process is also possible (last two
equations), but this will not be studied in further detail.
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9.1.1 Random Process (contd.) —

Example, non-stationary

l)"'Rler

DCR (Hz)

L] M. A. Karami et al.,

agua

DCR (Hz)

IM |
Pixel =1
500k k “
"{) 4 01) 7‘1 l!IH ’n l.jn ](,() 1}m ’Uu
Time (S) !
500k -
Pixel =2
Y% 20 40 60 80 100 120 140 160 180 200
Time (S) 10°
10M T
Prxel #3
5 e N ooy o g Hopamrrad Ansry~cmes e J
ol L L 1 L I 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Time (S) i3

Random Telegraph Signal in Single-Photon Avalanche Diodes, International Image Sensor Workshop, Bergen, 2009

arbon | 2025 Vietrology: Elements of Statistics EPFL

An example of a non-stationary Random Process is provided by the noise behaviour
of irradiated SPADs, which can exhibit a so-called RTS (Random Telegraph Signal)
behaviour over long periods of time. The noise level, or Dark Count Rate (DCR), does
basically jump between two or more different levels. It will be discussed in more
detail in the next lecture and is shown here for 3 different devices of the same type.
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9.1.2 Stationary Random Process

= We characterize the RP on how their statistical properties change in
time. If they do not change, we call the RP stationary. Hence:

Random Processes

fx(x,t) = fyx(x)

Wide-sense stationary

Strict-sense stationary

frcemple MO =X(@) = EX(D)} = J-_oox f (e, ©) dx = py

averages °7?

Var(X(©)} = E{(x(®) - my(t))"} = f_ (x — my (D) fr (x, £) dx = 02

= Weaker form: in Wide-Sense Stationary RPs, in addition to a constant
mean, the autocorrelation function only depends on the time difference,
but not on the absolute position in time:

WSS random process
@ does not drift with
Kyx(t,t + 1) = Kyx(t) (orequivalently Kyy(t;,t;) = Kxx(t; —t1)) time

(L] H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU  [LL]l F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU

aqua C. Bruschini, E. Charbon | 2025 Vletrology: Elements of Statistics Slide 3 ePFL

The behaviour of a Random Process is not always easy to characterise. A special sub-
category is represented by a stationary RP, whose statistical properties don’t change
over time - which does obviously not mean that the values which the underlying
random variables assume are constant!

A weaker form is represented by Wide-Sense Stationary RPs. An analytical example
will be shown in the exercises.

NB: for WSS, the variance would “automatically” also be constant. (-> R. Mauro p. 10,
(2.22)).
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9.1.2 Stationary Random Process — Example

fx( ) = fx(x)
my(t) = X(t) = px

Var{X(t)} = o2

AV/\A'AVA Ilv o \l Y vV i = s ¥ uX

(L] E. Charbon, “Image Sensors — ET 4390 Course Slides”, Delft 2016

aqua C. Bruschini, E. Charbon | 2025 Vietrology: Elements of Statistics
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9.1.2 Stationary Random Process (contd.)

= For a Wide-sense Stationary Random Process X (t), the autocorrelation function has the following
properties:

1. Kyx(ty,ty) = Kyx(ts, t2) = Kxx(0) = E{X?(t)} = X2(t) = 0 (= Kxx (0) = total power
of random signal X(t), does not change in time)

2. Kxx(r) = Kyx(—7)
3. |11|i£>noo Kyx (1) = |Tl|ianE{X(t) Xt+1)}=

=E{X@)}E{X(t + 1)} = X(t) 2 (example: average or DC power of random signal X (t))

Slowly fluctuating
KXX (T) random process

4. |Kxx(@)| < |Kxx(0)] forall

Rapidly fluctuating
random process

[L[]) F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU
L] H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU

agua —

EPFL

The autocorrelation function of wide-sense stationary RPs has the following
properties. NB:

1. Reuses the main property of the autocorrelation function of a WSS RP, i.e.
Kyx(t1,t;) = Kyx(t, — t1), and that X2(t) = E{X?(t)}

1. and 3.: note the difference between the total power of a signal X?%(t) and its
average or DC power X (t) .

3.
- First line: assumption that two RVs at very distant times (|t| — o0) are basically
uncorrelated -> E{XY} = E{X}E{Y}...

- Second line: the mean is constant fora WSSRP -> E{X(t)} = E{X(t + 7)}. But
E{X(t)} = X(t) ..
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9.1.3 Ergodicity

Random Processes

Wide-sense stationary

= “ARandom Process is ergodic if any sample function of the process takes Strict-sense stationary
all possible values in time with the same relative frequency that an
ensemble will take at any given instant”. Basically, its statistical properties )
can be deduced from a single, sufficiently long, random sample. Ergodic
[Wikipedia] Hence:
- 1 (T2
X(t) = E{X(t)} = lim —f x(t) dt = (X(t))
=T ) 1y " >
Ensemble function Time average
1 (T/2 “The ergodic hypothesis is that
Kyx(®) = E{X(t) - X(t + 1)} = Jim T f x(t) x*(t — 1) dt = Kxx (1) personal experience over time of
-T/2 a single individual reflects the
current statistics of the general
where (X (t)) is the time-average mean of the RP X (t) and Kxx (7) is the population.”
time-average autocorrelation function. (I. Vard)
(L] H. Bilgekul, Slides for the course “EE-461 Communication System II”, EMU  [LL]l F. Farahmand, Slides for the course “CES 540 Digital Communication”, Ch. 6, SSU
agua C. Brusc Charbon | 2025 Vietrology: Elements of Statistics Slide 42 ePFL

A very special class of Random Processes are the ergodic ones, whose statistical
properties can be deduced from a single, sufficiently long, random sample. This
basically allow us to replace the complex ensemble averages, which would need a
very large number of trials, with a simpler time average over a sufficiently long pe
of time.

riod
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Take-home Messages/W9-2

= Random Process:

= Definition, Ensemble vs. Time

= CDF, PDF, Moments, Autocorrelation

X))
Outcome of the

0
N first il of

the experiment

= Wide-sense & strict-sense stationary

)

[~ E A Outcome of the
second trial of

the experiment

® Ergodjcity Random Processes

Wide-sense stationary

Strict-sense stationary

x1) ~

!
\ Outcome of the
W nth trial of
+T  the experiment

3

Ergodic

v t—

agua C. Brusch Charbon [ 202t letrology: Elements of Statistics side 43 EPFL

Second recap section: we summarise here the main definitions, results and examples
discussed in this middle section.
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9.2.1 Law of Large Numbers

= Llaw of large numbers: describes the behavior of the sample mean of
i.i.d. random variables as the sample size grows

= Assume i.i.d. X1, X5, X3, ... with finite mean g and finite variance g2~ NE: i.i.d. = independent and
identically distributed Random

Variables, have the same PDF and

= u are all mutually independent

Sample Mean: X, -

= X, itself a random variable with

Mean: E{X,}= %E{Xl + - Xp} = %(E{Xl} ++ EX D =p

— 1
Variance: Var{X,} = n—zVar{X1 + - X3
2

1 o
= F(Var{Xl} + -+ Var{X,}) = -

(LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 10.2

aqua Charbon | 2025 Vletrology: Elements of Statistics Slide 45 ePFL

Note the concept of i.i.d. random variables and how the sample mean, and its
variance in particular, behave.

NB: the i.i.d. condition is probably a sufficient one, but not strictly necessary.

Q: which measurement examples and applications can you think of which exploit this
property?
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9.2.1 Law of Large Numbers (contd.)

» Law of Large Numbers: as n grows, the sample mean X,, converges to
the true mean u

= Essential for simulations, statistics, etc. — implicitely used when we use:

1) the proportion of times that something happened as an approximation
to its probability,

2) the average value in the replications of some quantity to approximate its
theoretical average.

1.0

08

Example: improvement in LiDAR ranging precision...

04

...when accumulating timing measurements, as 1/n @

ning proportion of Heads
06

0 50 100 150 200 250 300
[LL] J.K. Blitzstein, ). Hwang, Introduction to Probability, 1+t ed., 2015, Chap. 10.2 number of tosses

aqua C. Brusc Charbon | 2025 Vletrology: Elements of Statistics Slide 4¢ ePFL

LIDAR example (see also Section 8.2.9): calculate the precision of one single time (=
distance) measurement starting from an estimate of the timestamping precision, e.g.
10-100 ps.

Q: what happens when averaging repetitive measurements?
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9.2.2 Central Limit Theorem

= Law of Large Numbers: as n grows, the sample mean X,, converges to
the true mean u

But with which distribution? (@)

Sum of a large number of i.i.d. random variables has an approximately
Gaussian (normal distribution),
= regardless of the distribution of the individual RVs (could be
anything!)
= very weak assumptions.

Asn — oo, ﬁ(

X, —
n “) ~N(0,1)
o

(i.e. the CDF of the I.h.s. approaches ®, the CDF of the standard
Gaussian distribution)

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 10.3

aqua Charbon | 2025 Vietrology: Elements of Statistics Slide 47 ePFL

NB: note that we are looking at the distribution of one specific random variable, the
sample mean X,,. If one simply adds up the histograms in slide 49, the final
distribution will the similar to the starting one!
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9.2.2 Central Limit Theorem (contd.)

In other words: start with independent RVs from almost any distribution, discrete or continuous,
->add them up
-> distribution of the resulting RV has a Gaussian shape!

The CLT is an asymptotic result. Approximation: for large n

ﬁ(X"G_ “) - N (0,1)

NB: The distribution of the X; is still relevant, e.g. if highly skewed or multimodal, n might need to
be very large before the Gaussian approximation becomes accurate.

Conversely, if the X; are already i.i.d. Normals (Gaussian), the distribution of X, is exactly
N(u, “z/n) for all n.

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1%t ed., 2015, Chap. 10.3

agua

EPFL
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9.2.2 Central Limit Theorem - Example

Starting n=1l n=>35 n=30 n=100
distribution e . Histograms of the
1 I distribution of X,
Bin(10, 0.9) _r[ A_l{ ]L for different
| ln T [ T 1 T T T 1 | | T Starting
5 6 7 8 9 10 75 8.5 95 80 85 90 95 100 86 2.0 94 distributions Of the
A X; and increasing
Pois(2) II values of n.
|y, 11 llllilh il
r T T 1 r T T 1 r T T 1 r T T 1
0 2 4 6 8 0 1 2 3 4 10 15 20 25 30 16 20 24 NOthlIlg else than
| I 1M Gamma(n, 1)
Expo(1) h ‘|_|r _.,I'[
T T T T 1 r 1 T r T T 1 r T T 1
0 2 4 6 8 10 0 1 2 3 4 00 05 10 15 20 06 1.0 14
Beta(0.8, 0.8) mwwm'ﬂﬂ d| | I] d h y h‘h
T T T T 1 L L L Tt r r°r 1 T T T 1
0.60

P 0.0 0.4 08 0.0 04 08 03 04 05 06 07 0.40 0.50
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 10.3

agua C. Bruschini, E. Charbon | 2025 Vietrology: Elements of Statistics Slide 49 ePFL

Blitzstein Figure 10.5: Central limit theorem:

These are histograms of the distribution of X,, for different starting distributions of
the X; (indicated by the rows) and increasing values of n (indicated by the columns).

Each histogram is based on 10,000 simulated values of X,,. Regardless of the starting
distribution of the X}, the distribution of X;, approaches a Normal distribution as n
grows.

NB: If one simply adds up the histograms, the final distribution will the similar to the
starting one!




9.2.2 Central Limit Theorem - Example

= Poisson convergence to Gaussian: if
Y~Pois(n)

we can consider Y as a sum of n i.i.d. Pois(1) RVs.

Forlargen:Y - N (n,n)

(LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 10.3

aqua C. Bruschini, E. Charbon | 2025
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9.3 Elements of Estimation Theory

= Estimation theory has the purpose to solve one problem: given a set of data
{x1, %2, o, xN_1}
which depends on an unknown parameter vector 6, determine an estimator
0 = g(xq, X3, s Xn—1)
where g is some function.

= |n other words, how do we use collected data to estimate unknown parameters of a
distribution?

(L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 6.3

aqua Charbon | 202% Vietrology: Elements of Statistics
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9.3 Elements of Estimation Theory (contd.)

= |n general, if we assume that @ is deterministic, we will have a classical
estimation problem. It can be solved in the following ways, and many
more:

1. Least Squares Estimator (LSE)
2. Minimum Variance Unbiased Estimator (MVU)
3. Maximum Likelihood Estimator (MLE) @

4. Best Linear Unbiased Estimator (BLUE)

aqua C. Bruschin, €. Charbon | 202 tetclogy: Elements of Statst Sice 53 EPFL

For this section, a general understanding is all right. You can get the essence also
from some of the examples, like the BLUE estimator which is described later in the
same section.

You might also need to be able to think a bit outside of the box and be able to reply
to questions like “How can we for example estimate the lifetime of an exponential
distribution from its samples” and the like.
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9.3.1 Elements of Estimation Theory — Simple Mean Example

= Simple example: estimate the mean of a sample of i.i.d. RVs
X1, X2, X3, ., X

n
— 1
Sample Mean: X,, = EZ X;
j=1

is an estimate of the population mean or true mean,
E{X;} = the mean of the distribution from which the X;
were drawn.

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 6.3

aqua L. brusc Lnarbon 02¢ letrology: Elements of Statistics
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Note the difference betwen the true mean and its estimator E{X;} = X,,.
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9.3.2 Elements of Estimation Theory — LSE Example

Least Squares Estimator (LSE)

4004
.
.
P 3004
3 2004
o
L L L L L L >
20 10 10 20 30 40 50 60 1 1004
(b)
0
1.0 1.5 2.0 25 3.0
L[] https://commons.wikimedia.org/wiki/File:Linear_regression.svg Gradient
L] 1.G. Hughes, T.PA. Hase, Measurements and their Uncertainties, 1st ed., 2010, Chap. 6.3
aqua C. Bruschini, E. Charbon | 2025 trology: Elements of Statistics EPFL

A simple linear regression is shown on the left. On the top right, the data needs to be

fit with a linear equation passing through the origin, i.e. characterised by a single
variable, the slope shown in the bottom plot.
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9.3.3 Elements of Estimation Theory — MLE Example

Maximum Likelihood Estimator (MLE) to : @ @
correct for the exponential count loss in N /I
binary, clock-driven SPAD imagers SPAD pinel aray © @
ol — = . : : :

Cy: Measured count rate (externally)

o 100}
&
5’3 ‘ Cp: Detected count rate (internally)
O
50 | measured
~—— - linear
clock—driven readout model 1 — e~ Cp*xTreadout
event—driven readout model E[Cy]=
Treadout

0 100 200 300 400 500 600 700

CD [keps] E[Cp] = —In(1 — Cy % Treadout)

Treadout

LI 1. M. Antolovic et al, Nonuniformity Analysis of a 65-kpixel CMOS SPAD Imager, IEEE Trans. on Electron Devices 63, 2016

agua C. Bruschini, E. Charbon | 2025 Metrology: Elements of Statistics Slide 56 =PFL

Example of a Maximum Likelihood Estimator:

The first SwissSPAD camera has 512x128 pixels, with an architecture quite similar to
one of the more advanced SwissSPAD2 sensor.

The camera is basically recording individual binary frames at very high speed. Given
that the in-pixel memory is of one bit, it cannot differentiate when more than one
photon was actually detected. At low photon counts this is not an issue, but as the
light intensity, and thus the number of detections per frame C, increases (horizontal
axis), some photon detections C,, (vertical axis) are unavoidably lost. The response
curve becomes logarithmic rather than binary.

Q: how can we estimate the true number of detected photons from the measured
ones (basically inverting the curve shown above)? Which is the best estimator for the
true number of detected photons?

=> It turns out that the best estimator for C,, is the maximum likelihood estimator
shown in the bottom right equation.
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9.3.4 Elements of Estimation Theory — BLUE Example

annihilatim\
process N

aqua C. Bruschini, E. Charbon | 2025

Positron Emission —_——— E;‘
Tomography Igetector ]
Basics block &

Time
> Energy
Position

y
‘—-LOR

coincidence
unit

[LL) GE Discovery 1Q, Nov 2016

sy: Elements of Statistics

([ L. Braga et al,, 1S5CC, 2013

Slide 57

EPFL

Example of another estimator (BLUE) used the PET application detailed in Section

8.2.9.
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9.3.4 Elements of Estimation Theory — BLUE Example

Positron Emission
Tomography
Reconstruction
Example

L] G. Nemeth, Mediso, Delft WS 2010

agua

EPFL
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9.3.4 Elements of Estimation Theory — BLUE Example

Positron Emission Tomography Building Blocks & Main Variables

Problem: estimate the scintillation event time T, given a set of timing measurements t,

Aim: obtain estimator with lowest variance (best timing precision)

scintillator crystal
g?g“t(’)“na * Spot Spatial Position (X;Y)

[22]
c
* <}
2 Pulse Arrival Time T
T . o
scintillation
event =t
. g = — Time
5 ;g -. # Z = w T
o e P = c )
T e *9 3
- n':? 2 Pulse Energy
photosensor Z
*— Time
~200 ns i
LD R. Walker et al., 1ISW, 2013 4 .. . 3 Time
Typ some 10% photons/scintillation, few 103 detected
Jetrolog Side 59 EPFL
| =

logy: Elements of Statistics

aqua C. Bruschini, E. Charbon | 202

One of the key variables for PET is CTR (Coincidence Resolving Time), which is
basically determined by using two modules in coincidence and plotting the gamma
interaction time differences. It ultimately tells us how good the timing resolution is.

The key question here is: supposing that | am working in a digital approach, where my
detector delivers a set of timing measurements ¢t

- which is the best estimate T, of the scintillation event time T,?
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9.3.4 Elements of Estimation Theory — BLUE Example

LYSO: t,,,.~70ps, T4,,~30ns

rise

Fishburn and Charbon (2010)

1

~ M. Fishburn, E. Charbon,
== NSS-MIC, 2012

~ M. Fishburn, E. Charbon,
=" IEEE TNS(57), 2010

-~ E. Venialgoetal.,
“= NSS-MIC, 2015

Probabllity Denslty (a.u.)
o
o

. 100 150 200
Time (ns)

aqua .8 Charbon | 2 | f Sttt Sice 0 EPFL

We can start with the PDF of the timing distribution of the scintillation photons
(visible light), as illustrated above. In general the scintillation model is a double
exponential, as already seen.

We might be tempted to say that the first detected photon is the best (lowest
variance), but this is not necessarily true — see also the next slides. There is indeed the
influence of the finite rise time in scintillators and of the transit time spread (TTS) in
photomultiplier tubes (PMTs) (Gatti and Svelto 1966), plus the inevitable contribution
of noise sources.

Quantitative example [S. Gundacker et al.]: Measurement results with LSO:Ce
codoped 0.4%Ca scintillators with a (finite!) rise time of 1, ~ 70 ps, a fall time of 1,
~ 30:3 ns and a total number of scintillation photons produced n=20’400 per 511keV
gamma. LSO scintillator gives a photon detection rate of typically 100 photoelectrons
per nanosecond.




9.3.4 Elements of Estimation Theory — BLUE Example

1
-~ 1% photoelectron
S
<
Order g
Statistics g
0 0.5F
*? 20 photoelectron
3 30™ photoelectron
S 40" photoelectron
<)
a
G0 2 4
Time (ns) f),F(t)=
R' scintillation
_ : . (R—aq)r(+\(q—1) PDF/CDF
palt) = ==l ~ PO OO0, DT
] ) ) Order statistics implies
PDF of the gt" photoelectron’s time-of-registration. .
correlation between
[0 J.K. Blitzstein, J. Hwang, Introduction to Probability, 1% ed., 2015, Theorem 8.6.4 tl mestam pS

L] E. Venialgo, E. Charbon et al., PMB 2015

agua C. Brusc ) | 202 letrology: Elements of Statistics Slic 1 ePFL

How can we calculate the PDF of the first, second, etc photons, to better understand
why the first detected photon is not necessarily the best (lowest variance)? We can
temporally reorder them...

- Order Statistics: the PDF pq (t) is analytically given by the equation above. The
variance of each detected photon does basically tell us how good it is at estimating
the overall time of arrival, or scintillation event time, T},.

NB: Seifert: The order statistics are NOT i.i.d. (the “initial” photons are).




9.3.4 Elements of Estimation Theory — BLUE Example
Lower bound for LYSO:Ce

350 ~
i PP * using n" timest
Timestamp for the n" detected scintillation photon 30k | © 32123 frs rlwn:;i:srt‘::nps "
10 = using all timestamps
Z 250 Parameters:
8 n=>5 }_E 1.~ 90 ps
o

z n=10 Y 200 7,= 44 ns
§ 6t 150 a=120ps
E n 20 ‘\:Iut = 4700
o
s 4} 100
=] 0 20 40 60 80 100
= Order Statistic

2t Lower bound on the CRT for LYSO:Ce on MPPC-510362-33-050C, using

the n™, the first n, or all detected photons (“order statistics”) for timing
0
0.2 0.4 0.6 0.8 1
y .time ("5)‘ o [0 . Schaart, ANSRI 2016, 2016, Dublin, Ireland
Exemplary probability density functions for the n'" order statistic
for LYSO:Ce on MPPC-S10362-33-050C
agua C. Bruschini, E. Charbon | 2025 Vietrology: Elements of Statistics Slide 62 ePFL

Left: example of the PDF of the first, fifth, etc photons for a certain scintillator. The
variance (see the FWHM) of the first one is clearly not the smallest!

Right: overall timing performance for different choices of timing estimators. In this
case, using the n-th timestamp (e.g. the first, second, or subsequent), does clearly not
deliver the best (i.e. lowest) result, as obtained when using multiple timestamps.
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9.3.4 Elements of Estimation Theory — BLUE Example

0
Alp)
Iy = Z "
g=1

A simple estimator (1) _

q
approaCh' (p = 1 estimator)

[LL] D. Schaart, ANSRI 2016, 2016, Dublin, Ireland

(L] E. Venialgo, E. Charbon et al,, PMB 2015

aqua C. Bruschini, E. Charbon | 202

L._ g=1...

(p) _ .
wi’, p=1.2,3. «—— General estimator

(p is one of 3 possible estimators)

@

.0 «——— Simple mean coeffs.

350

» usingn rh1:ir~ﬁestamp
300 © using first n timestamps
using all timestamps

100
0 20 40 60 80 100

Order Statistic

Hgy: Elements of Statistics

EPFL

The first equation shows the general expression for the timestamp estimator TE. A
simple one could just be the mean of the measured timestamps!

Image source: derived from Fig. 3 in Venialgo 2015 (refers to EndoTOF case with 48

TDCs).
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9.3.4 Elements of Estimation Theory — BLUE Example

= Assuming large number of measurements
= QOther Estimator Approaches: Best Linear Unbiased Estimator (BLUE)

0
Alp) .
Ty = thw&‘"’. p=1.2,3.«—— General estimator
-1
é,-“: ¢ fl ) BLUE coeffs. (correlation matrix)
NG

(p = 3 estimator
Photoelectron order number

12 24 48

100

80r

AT (ps)

60

40r

2Gl 2‘4 48

R Number of TDCs
L] E. Venialgo, E. Charbon et al.,, PMB 2015

agqua C. Brus Charbon | 202t letrology: Elemen
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A more complex estimator would be the BLUE one. The analytical formula for the
weights w,, is obtained from the scintillation model and the order statistics, the
covariance matrix C is then obtained from experimental measurements.

NB: d = column vector filled with ones and with a length equal to the number of
utilized timestamps.
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. %\2000:_ CMS Preliminary +S/ngwgh‘ed Data
9.4 Error Analysis G1800 fs=7TevLas 1! T SEH
~ E 's=8TeV,L=531b" ek
©1600 —
Z1400f
21200
= The aim of error analysis is to quantify and record the errors associated 51000} Higgs boson
with the inevitable spread in a set of measurements. T 800F ‘
£, 6001
2 400
= Confidence boundaries represent the quality of the approximation given 200F
by the uncertainty. E P S S
Y Y ° 120 140
m,, (GeV)
EXample: the SiX—Sigma method, 5 Sigma ||m|t (CERN) @ 10’0007Standardmodelpredi((ion 4 Data point with margin of error

Hint of new discovery ->

1000
* Uncertainties can be associated to random errors (hence influencing the % i \ I ;
statistical fluctuation...

variance of the measurement distribution) or to systematic errors (acting
on the mean value of the measurement distribution).

Number of events

10 4

200 400 600 800 1000 1200 1400 1600
Combined energy of the photons produced (GeV)

L] 1.G. Hughes, T.PA. Hase, Measurements and their Uncertainties, 1%t ed., 2010, Chap. 1 .
https://universe-review.ca/R15-20-accelerators03.htm

aqua C. Bruschini, E. Charbon | 2025 Vietrology: Elements of Statistics Slide 6¢ ePFL

NB: different communities have different conventions = have a look at some of the
error bars used in the biosciences...
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9.4.1 Accuracy

Accuracy -> mean

= The accuracy of a measurement gives a notion of the mean
value of the set of measurements distribution with respect to
the real value.

= An accurate measurements distribution will hence have a
very small systematic error, but could be affected by a large
spread in the data (high variance).

= Accuracy can be enhanced in the experimental real life by
means of calibration techniques.

L] 1.G. Hughes, T.PA. Hase, Measurements and their Uncertainties, 1%t ed., 2010, Chap. 1

aqua C. Bruschini, E. Charbon | 2025 Metr
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9.4.1 Accuracy — Example

LinoSPAD DNL

3 T T T T T T

LinoSPAD INL

‘ﬁ &
" W
2 8
z 2 Calibration of a
Time-to-Digital
1 1 1 I 1 converter
0 20 40 80 80 100 120 0 20 40 50 80 100 120 .
S. Burri, EPFL, MDPI
Adjusted output code Adjusted output code
@ Instruments, 2018
LinaSPAD corrected DNL .
LinoSPAD corrected INL
05 T T T T T T T T
04
= 03
2 T 02
& ; 0.1
P
W o
% z -01
8 Z 02
03
04
05 I R Y N NN N
0 10 220 30 40 50 60 70 80
Output code Output code
agua C. Bruschini, E. Charbon | 2025 ogy: Elements of Statistics Slide 68 =PFL
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9.4.2 Precision

Precision -> spread (variance)

The precision of a measurement gives information about
the spread of the measured set of data collected by the
measurement.

A precise measurement distribution will have a low
dispersion of data (hence a small variance), but it might
have a mean value very distant from the real one.

In order to enhance precision, the most simple way is to
increase the size of the sample data. In fact, as shown
previously, for experimental data the variance decreases
linearly with the number of samples collected.

L] 1.G. Hughes, T.PA. Hase, Measurements and their Uncertainties, 1%t ed., 2010, Chap. 1
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9.4.2 Accuracy vs. Precision

- < w

High Precision, High Accuracy Low Precision, High Accuracy

High Precision, Low Accuracy Low Precision, Low Accuracy

Statistics Slide 71 =PFL

Elements
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9.4.3 Resolution

The resolution of a measurement is the smallest change in the

underlying physical quantity that produces a response in the
measurement. [Wikipedia]

In case of an ADC (analog-to-digital converter), the resolution is
given by one bit.

Example: for an oscilloscope with an 8 bits ADC, set at 100
mV/div (i.e. for a total screen width of 800 mV), the
resolution of each point collected is given by:

800
8 bits = 28 different values — Res = 5T mV = 3.125mV

agua

EPFL
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08

Take-home Messages/W9-3

» [aw of Large Numbers:

running proportion of Heads
02 04 08

= Concept of i.i.d. random variables

= Mean and Variance n=1 n=
= Central Limit Theorem
Bin(10, 0.9)
= Estimation Theory:
5 6 7 8 9 10 75 B85 95
= Examples of estimators, MLE (Maximum Likelihood
Estimator)

= Example: Positron Emission Tomography <> different time-
of-arrival estimators

= Precision, Accuracy, Resolution
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50 100 150 200 250 300

number of tosses
80 85 90 95 100 86 9.0 94

Third and final recap section: we summarise here the main definitions, results and

examples discussed in this third and final section.
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Appendix A: Gamma Distribution — Gamma Function

= While the Exponential distribution represents the wait
time before the first success under the conditions of
memorylessness, the gamma distribution represents the
total waiting time for multiple successes (hence it is the
sum of multiple exponential distributions).

=  We first define the gamma function as:

*© dx
I'(a) = f x%e X —, a>0
0 x
= The gamma function has the following properties:
Fla+1)=arl(a)

'n) =(m-1)!

(L) J.K. Blitzstein, J. Hwang, Introduction to Probability, 15t ed., 2015, Chap. 8.4

aqua C. Bruschini, E. Charbon | 2025 Vletrology: Elements of Statistics
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Appendix A: Gamma Distribution (contd.)

Gammal(a,1)
= Then, we say that X has a gamma distribution (we will Gamma(a. 1)
write X~Gamma(a, 1)) if:
R s
PDF: fX(x)zmx e ;, x>0 -ér
* From the gamma distribution of X~Gamma(a, 1), we get, s —
for A > 0, the more general Y = X/A~Gamma(a, 4): o s 0 s 2
d 1 1 Gamma(10, 1)
x
= Zl=——y)%e Y —21
fr) = fx(x) dy| F(a)( y)%e Ay .
hence i
PDF: f (y) = L(/ly)“e_)lyl y >0 : 0 5 10 15 20
! I'(a) y’

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 8.4
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Appendix A: Gamma Distribution (contd.)

Gammal(a,1)
= From the PDF of the gamma distribution just obtained Gammaa, 1)
Y~Gamma(a, 1), it can be shown that the Gamma is
nothing else but the distribution obtained by summing up _
a independent exponential distributions. In fact, for °
a=1: 5
PDF:  f,(y) = L ()Ly)ae_’b’l y>0 g
’ Y F(a) y’ 0 5 1'0 1'5 2'0
reduces to
1 Gamma(10, 1)
PDF:  fy(y) = Ay e‘}“y;=/1€'ly, y>0
which is the exponential distribution. . )
= Follows that, let X3, X5, ..., X, be ni.i.d. Expo(1). Then: .

L] J.K. Blitzstein, J. Hwang, /mr?zfiuﬁorg(t; Pibééi;itﬁléﬂsogsa&%%(n’ /1)
aqua Charbon | 2025 Vietrology: Elements of Statistics Slide 7 ePFL




Appendix A: Gamma Distribution (contd.)

Gammal(a,1)
* ForaX~Gamma(a, 1), it follows: Gammal, 1)
“ 1 dx T(a+1) o
Mean: E{X} =J —xtle¥ —=— =g *
o (@) x I'(a) 5
*° 1 dx
Second Moment:  E{X?} = j —— X2 — =
0 F(a) X ° 0 5 1‘0 1’5 2‘0
F(a + 2) Gamma(10, 1)
= W = a(a + 1)
Variance:  Var{X} = E{X?} - (E{X})? = 6
=a(a+1)—a’=a .

L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 8.4
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Appendix A: Gamma Distribution (contd.)

Gammala, 1)
Gamma(3, 1) Gamma(3, 0.5)
= For the more general gamma distribution
Y = X/A~Gamma(a, 1), by simple transformation, we s 5
obtain: . .
1 a
Mean: E{Y}=-E{X}=- R i
A A 3 x - 1Sy . : . :
0 L ¢ 10 15 20 ] -] 10 15 20
Second Moment: ~ E{Y?} = iE{X} _aerD o = e
: 22 22 5
. 1 a .
Variance: Var{Y} = =z Var{X} = =z E, 58
°3 5 10 ) 5 10 5 2
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1t ed., 2015, Chap. 8.4 -> calculate mean/variancefor some examples
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Appendix A: Gamma Distribution (contd.)

Gamma(3, 1) Gamma(3, 0.5) Gamma(a Z)
,
S :
& &
* - t g -> calculate mean/variance
!
for some examples
gl ————| § ——— a
0 5 10 15 20 10 15 20 Mean: —
« g A
Gamma(10, 1) Gamma(5, 0.5)
° a
° Variance: -
5| A
: 52
s |
=
g g
(=] L T T T T T o T T T
L] J.K. Blitzstein, J. Hwang, Introduction to Pmbabi/ity,ol“ ed., 25015, Ch;j). 8.4 1 ® 1:) 1 20
aqua C. Brusc Charbon | 202 en atis 7 ePFL
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Appendix B: Poisson Process

= Definition: a sequence of arrivals in continuous time with rate A is a (1D) Poisson process with rate
A if the following two conditions hold:

1) The number of arrivals that occur in an interval of length t is a Pois(At) RV.

2) The numbers of arrivals that occur in disjoint intervals — e.g. (0,10), [10,12) and [15,%) —
are independent of each other.

* If Tj is the time of the j-th arrival, N(t) is the number of events up to the time ¢, follows:

P{T, >t} = P{N(t) = 0} = e~*

so Ty has an Exponential distribution (T; ~Expo(1)), hence T;, being the sum of j i.i.d. exponentials,
is a Gamma distribution (Tj~Gamma(j, 1)), and the interarrival times are i.i.d. Expo(1) RVs.

HK—XK

|
1 1 1 1
1 1 1
0 T v T, T, T, T, .
1 1 1 E 3 1 4 5 1
(- A A — _/
—~— " —_—
Aty At, Ats
L] J.K. Blitzstein, J. Hwang, Introduction to Probability, 1 ed., 2015, Chap. 5.6, 13
aqua C. Brusc Charbon | 202 letrology: Elements of Statistics Slide 80 ePFL
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Appendix B: Poisson Process

= NB:i.i.d. =independent and identically distributed Random Variables, have the same PDF and are

all mutually independent

= “Confirmation” that the Exponential distribution is closely connected to the Poisson distribution!

= Examples of Poisson processes:
» 1D: cars passing by a highway checkpoint;
> 2D: flowers in a meadow;
» 3D: stars in a region of the galaxy.”

Dark Counts and “real” detections in a SPAD sensor

(LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 15 ed., 2015, Chap. 13

aqua C. Bruschini, E. Charbon | 2025 Vietrology: Elements of Statistics
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Appendix B: Poisson Process

» Timeline: (0, +o) but it could also be
(_OO’ +00)

= To generate n arrivals from a Poisson process
with rate A:

1. Generateni.i.d. Expo(4) RVs:
X1, X5, 0, Xy

2. Forj=1,2,..,nsetTj=X; +-+X;

= Then we can take the Ty, ..., T,, to be the arrival
times.

(LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 15 ed., 2015, Chap. 13

aqua C. Bruschini, E. Charbon | 2025

Simulate Poisson Processes in 1D

=5 | :

0 10

Note: interarrival times are i.i.d., but the arrivals
are not evenly spaced -> there is a lot of
variability in the interarrival times, which
produces Poisson clumping

sy: Elements of Statistics Slide 82 ePFL
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Appendix B: Poisson Process

= A Poisson Process has the following three properties:

Conditioning
|

1
4

1. Conditioning: let {N(t),t > 0} be a Poisson
Process with rate A and t; > t;. Then the
conditional distribution stands:

N(t,)

N(t,) - N(t,)

Superposition
|

N@Q|N@g::n~anL%)

2. Superposition: let {N;(t),t > 0} and a=1|

1
10

Thinning

{N,(t),t > 0} be two independent Poisson

0 1

Processes with rates 1; and A,. Then the
combined process N(t) = Ny (t) + N,(t) isa A ]

A1 -p)=05 |

Poisson process with rate 4; + 4,. 0
(LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 15 ed., 2015, Chap. 13
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Appendix B: Poisson Process

= A Poisson Process has the following three properties:

Conditioning
|

1
4

3. Thinning: let {N(t),t > 0} be a Poisson
Process with rate A, and classify each event at

N(t,)

N(t,) - N(t,)

Superposition
|

the arrival as either type-1 events (with

probability p) or type-2 events (with
probability 1 — p), independently. Then the

type-1 events form a Poisson process with e
rate Ap, the type-2 events form a Poisson

1
10

Thinning

process with rate A(1 — p) and they are a=1}
independent.

0 1

A1 -p)=05 |

p=05}|

0

(LD J.K. Blitzstein, J. Hwang, Introduction to Probability, 15 ed., 2015, Chap. 13
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